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CHAPTER 1. Introduction

1.1 Electricity Markets Restructuring

Electric power industries around the world have undergone restructuring - from government

regulated to more market oriented. The aim of restructuring the industry has been to reduce

monopoly power enjoyed by a few players in the industry and promote more private investment

in generation, transmission and distribution facilities leading to greater competition. The US

foray into restructuring electricity markets started in the late 1990’s, but got off to a disastrous

start with the spectacular collapse of California market in the beginning of 2001. Many of the

lessons from the episode have been learned and corrected but many issues still remain to be

researched.

1.2 Wholesale Power Markets Overview

Electric power systems have traditionally been operated as natural monopolies. Restructur-

ing has entailed unbundling of hitherto vertically integrated organizations into independently

managed generation, transmission and distribution systems. As a result, electric power markets

can be divided into wholesale and retail layers.

The wholesale power market design proposed by the U.S. Federal Energy Regulatory Com-

mission (FERC) in an April 2003 white paper FERC (2003) encompasses the following core

features: central oversight by an independent system operator (ISO); a two-settlement system

consisting of a day-ahead market supported by a parallel real-time market to ensure continual

balancing of electric power supply and demand.

In this new environment, electricity is traded like other commodities in ISO organized power

pools. However, power systems must be in instantaneous power balance, i.e. demand must
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equal supply at all times. Moreover, at present, electric power cannot be stored economically

in substantial amounts. The power flows on transmission systems are governed by physical

laws of power flow such as the Kirchoff’s law, and are constrained by the overall capacity of

transmission lines. During the peak hours of electric power demand, the above mentioned

constraints become binding affecting outcomes throughout the grid. Transmission constraints

in particular create congestion, which can impede the generation and/or injection of electric

power into the grid in “merit-order”, i.e., from least-cost generator to high-cost generators.

Electric power prices can be very volatile and hence, new forms of risk have arisen due to the

restructuring.

As part of restructuring, congestion on electricity transmission grids is now handled in

many energy regions by means of locational marginal pricing (LMP), i.e., the pricing of electric

energy in accordance with the location of its injection or withdrawal from the grid. The LMP

so calculated at a node k measures the least cost to supply an additional unit of load at that

location from the resources of the system. The difference in LMPs at any two buses is known

as congestion rent, which is collected by the ISO. In the case of grid congestion, LMPs can vary

widely across the grid, which creates price risk for all market participants.

Using existing market design features, this thesis investigates the risk management issues

of market participants and overall efficiency of the wholesale power markets. Additionally, I

also study the market rules dealing with renewable energy sources.

1.3 Original Contributions

The thesis consists of the following chapters. The first chapter is titled An Agent-Based Test

Bed Study of Wholesale Power Market Performance Measures, and it presents the difficulties

in objectively measuring the market power of various market participants owing to the physical

characteristics of electricity. Using a wholesale power market test-bed (AMES), we study the

efficacy of various traditional, as well as newly proposed measures of market performance in

a dynamic setting, with learning agents. An earlier version (Somani and Tesfatsion (2008)) of

the work reported in this chapter was published in IEEE Computational Intelligence Magazine,

in November 2008. The paper was jointly written with Dr Leigh. Tesfatsion.
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The second chapter is titled Financial Risk Management in Electric Power Markets: Lit-

erature Review, and it introduces the concept ofprice risk in restructured power markets. We

present a brief scenario illustrating the origin of price risk. We also introduce various measures

market participants employ to hedge against those risks. We then provide the definition of Fi-

nancial Transmission Rights (FTR) and how those can be used along with Bilateral Contracts

to fully hedge against price risk. The chapter also presents a survey of research on implications

of FTR market design on overall wholesale power market efficiency.

The fourth chapter is titled Study of Joint Bidding Strategies in Physical and Financial

Electric Power Markets Using Analytical and Agent-Based Models, and it presents a study

of joint bidding strategies of market participants in inter-linked financial and physical energy

markets. Specifically, we study how generation companies bid into ISO organized FTR auctions

based on their expectations of payoffs in the day-ahead energy markets, and the subsequent

supply offer strategies in the day-ahead market, in order to maximize joint net-earnings from

energy sales and FTR revenues. The results show that pure strategy Nash-supply function

equilibria exist only for certain portfolios of FTRs. It is also observed that the strategic

behavior of generation units changes dramatically for different congestion patterns in the grid.

However, even for a simple setup with two identical generators, it is not easy to solve the

problem using purely analytical methods. Hence, we use agent-based computational methods

to solve for the joint decision making problem. Generation companies (GenCos) are modeled

as adaptive learners in both the markets, interacting repeatedly with other GenCos until they

converge to “stable” action choices in the two markets. The results show that the GenCos are

able to learn optimal strategies, based on their spatial location on the grid. Additionally, the

GenCos can systematically coordinate their strategies in the two markets.

The fifth chapter is titled Strategic Wind Trading by Firms with Mixed Portfolio of Gen-

eration Assets, and it presents the strategic incentives of companies with both conventional

units and wind plants, to under/over-report wind supply offers in day-ahead markets, relative

to the expected wind power output in real-times markets. The use of analytical and numerical

methods demonstrates the strategic incentives of mixed generation portfolio companies.
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CHAPTER 2. An Agent-Based Test Bed Study of Wholesale Power

Market Performance Measures

Wholesale power markets operating over transmission grids subject to congestion have dis-

tinctive features that complicate the detection of market power and operational inefficiency.

This study uses a wholesale power market test bed with strategically learning traders to ex-

perimentally test the extent to which market performance measures commonly used for other

industries are informative for the dynamic operation of restructured wholesale power markets.

Examined measures include the Herfindahl-Hirschman Index (HHI), the Lerner Index (LI), the

Residual Supply Index (RSI), the Relative Market Advantage Index (RMAI), and the Opera-

tional Efficiency Index (OEI).

2.1 Introduction

The U.S. electric power industry is currently undergoing substantial changes in both its

structure (ownership and technology aspects) and its architecture (operational and oversight

aspects). These changes involve attempts to move the industry away from highly regulated

markets with administered cost-based pricing and towards competitive markets in which prices

more fully reflect supply and demand forces.

The goal of these changes is to provide industry participants with better incentives to control

costs and introduce innovations. The process of enacting and implementing policies and laws

to bring about these changes has come to be known as restructuring .

This restructuring process has been controversial. The meltdown in the restructured Cali-

fornia wholesale power market in the summer of 2000 has shown what can happen when market

mechanisms with poorly designed incentive structures are implemented without proper testing.
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Following the California crisis, many energy researchers have eloquently argued the need to

combine sound physical understanding of electric power and transmission grid operation with

economic analysis of incentives in order to develop electricity markets with good real-world

performance characteristics.

Many commercially available packages for power system analysis now incorporate compo-

nents critical for the simulation of restructured electricity markets (e.g. optimal power flow

solvers). However, these packages have three major drawbacks.

First, the critical effect of incentives on human participant be haviors is typically not ad-

dressed. Second, the proprietary nature of these packages generally prevents users from gaining

a complete and accurate understanding of what has been implemented, restricts the ability of

users to experiment with new software features, and hinders users from tailoring software to

specific needs. Third, the concern for commercial applicability to large-scale real-world sys-

tems makes these packages cumbersome to use for research, teaching, and training purposes

requiring intensive experimentation and sensitivity analyses.

In response to these concerns, a group of researchers at Iowa State University has been

working to develop the AMES Wholesale Power Market Test Bed.1 AMES is an agent-based

computational laboratory suitable for studying the dynamic performance of restructured whole-

sale power markets in a manner that addresses both economic and engineering concerns. A

key aspect of the AMES project is the release of AMES as open-source software to encourage

interdisciplinary communication and cumulative enhancements.

AMES incorporates core elements of a wholesale power market design recommended by

the U.S. Federal Energy Regulatory Commission in an April 2003 White Paper FERC (2003).

This design recommends the operation of wholesale power markets by Independent System

Operators (ISOs) or Regional Transmission Organizations (RTOs) using locational marginal

prices (LMPs) to price energy by the location of its injection into or withdrawal from the

transmission grid.

1Detailed descriptions of AMES can be found in refs. (Sun and Tesfatsion (2007b,a); Li et al. (2008a,b)).
AMES is an acronym for Agent-based M odeling of E lectricity Systems. The first version of AMES was released
as an open-source Java software package at the IEEE PES General Meeting in June 2007. Downloads, manuals,
and tutorial information for all AMES version releases to date can be accessed at AME ().
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Figure 2.1 Energy regions operating under variants of FERC’s market design

As shown in Fig. 2.1, variants of FERC’s proposed wholesale power market design have now

been adopted in many regions of the U.S. These regions include New England (ISO-NE), New

York (NYISO), the mid-atlantic states (PJM), the midwest (MISO), the southwest (SPP), and

California (CAISO). According to Joskow (2006), over 50% of generating capacity in the U.S.

is now operating under some variant of FERC’s market design.

AMES models electric power sellers (generation companies) with learning capabilities inter-

acting over time with electric power buyers (load-serving entities) in an ISO-managed wholesale

power market. This market operates over an AC transmission grid subject to congestion. The

ISO manages congestion on the grid by means of LMPs derived from optimal power flow solu-

tions.

This study explores the potential usefulness of test beds such as AMES for practical energy

policy concerns. Specifically, we use AMES to experimentally test the extent to which market

performance measures commonly used for other industries are informative for the dynamic

operation of restructured wholesale power markets.



www.manaraa.com

7

In particular, we focus on the measurement of “seller market power” and “market efficiency”

relative to a “competitive equilibrium ” benchmark. Competitive equilibrium is said to hold for

a market when all traders take prices as given in the formulation of their demands and supplies,

and the market price is then set to equate total market demand to total market supply. Seller

market power refers to the ability of a seller to profitably raise the market price of a good

relative to competitive equilibrium conditions. Market efficiency measures the degree to which

the total net surplus (value) secured by sellers and buyers through actual market operations

matches the maximum total net surplus that sellers and buyers would secure under competitive

equilibrium conditions.

The organization of this study is as follows. The main features of the AMES test bed are

outlined in Section 2.2. In Section 2.3 we elaborate on several special factors complicating

the detection and prevention of seller market power and the measurement and attainment of

market efficiency in restructured wholesale power markets. In particular, we show that the

standard ISO optimal power flow objective function used to manage these markets deviates

systematically from the standard economic measure for market efficiency when grid congestion

is present.

In Section 2.4 we provide careful definitions for the specific seller market power and market

efficiency measures to be experimentally examined in this study. We start with two commonly

used measures for seller market power, the Herfindahl-Hirschman Index (HHI) and the Lerner

Index (LI). We then present the Residual Supply Index (RSI) recently developed by CAISO

researchers as a test for seller market power in wholesale power markets. We next explain

the Relative Market Advantage Index (RMAI), a market performance measure developed by

Nicolaisen et al. (2001) as a necessary condition for seller market power. Finally, we examine a

measure for efficient market operations referred to as the Operational Efficiency Index (OEI).

Section 2.5 sets out a simple experimental design permitting comparisons of the strengths

and weaknesses of each of these measures relative to its intended purpose. Section 2.6 presents

some of our main experimental findings to date.
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Figure 2.2 AMES test bed architecture

2.2 The AMES Test Bed (Version 2.01)

AMES(V2.01) incorporates, in simplified form, core features of the wholesale power market

design proposed by the U.S. FERC (2003); see Fig. 2.2. A detailed description of these features

can be found in materials provided at the AME () homepage.

Below is a summary description of the logical flow of events in the AMES(V2.0) wholesale

power market:

• The AMES wholesale power market operates over an AC transmission grid starting on

day 1 and continuing through a user-specified maximum day (unless terminated earlier

in accordance with a user-specified stopping rule). Each day D consists of 24 successive

hours H = 00,01, ...,23.

• The AMES wholesale power market includes an Independent System Operator (ISO) and

a collection of energy traders consisting of Load-Serving Entities (LSEs) and Generation

Companies (GenCos) distributed across the busses of the transmission grid. Each of these

entities is implemented as a software program encapsulating both methods and data; see,

e.g., the schematic depiction of a GenCo in Fig. 2.3
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Figure 2.3 AMES GenCo: A cognitive agent with learning capabilities

• The objective of the ISO is the reliable attainment of appropriately constrained oper-

ational efficiency for the wholesale power market, i.e., the maximization of buyer and

seller total net earnings (surplus) subject to generation and transmission constraints.

• In an attempt to attain this objective, the ISO undertakes the daily operation of a day-

ahead market settled by means of locational marginal pricing (LMP), i.e., the determi-

nation of prices for electric power in accordance with both the locating and timing of its

injection into, or withdrawal from, the transmission grid. Roughly stated, a locational

marginal price at any particular transmission grid bus is the least cost to the system of

servicing demand for one additional megawatt (MW) of electric power at that bus.2

• The objective of each LSE is to secure power for its downstream (retail) customers.

During the morning of each day D, each LSE reports a demand bid to the ISO for the

day-ahead market for day D+1. Each demand bid consists of two parts: a fixed demand

2In reality, LMPs are shadow prices for “nodal balance constraints” constituting part of the constraint set
of optimal power flow problems and are derived as derivatives of the optimized power flow objective function
with respect to particular types of perturbations of these constraints. Moreover, these nodal balance constraints
are imposed at “pricing nodes” that might not correspond to actual physical bus locations on the grid. For
expositional simplicity, throughout this study we use the standard engineering short-hand description for LMPs
as valuations for single-unit increases in demand and we treat pricing nodes as coincident with transmission grid
busses. For a more rigorous explanation and derivation of LMPs, see Sun and Tesfatsion (2007a).
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bid (i.e., a 24-hour load profile); and 24 price-sensitive demand bids (one for each hour),

each consisting of a linear demand function defined over a purchase capacity interval.

LSEs have no learning capabilities; LSE demand bids are user-specified at the beginning

of each simulation run.

• The objective of each GenCo is to secure for itself the highest possible net earnings each

day. During the morning of each day D, each GenCo i uses its current action choice

probabilities to choose a supply offer from its action domain ADi to report to the ISO

for use in all 24 hours of the day-ahead market for day D+1.3 Each supply offer in ADi

consists of a linear marginal cost function defined over an operating capacity interval.

GenCo i’s ability to vary its choice of a supply offer from its action domain ADi permits

it to adjust the ordinate/slope of its reported marginal cost function and/or the upper

limit of its reported operating capacity interval in an attempt to increase its daily net

earnings.

• After receiving demand bids from LSEs and supply offers from GenCos during the morning

of day D, the ISO determines and publicly reports hourly power supply commitments and

LMPs for the day-ahead market for day D+1 as the solution to hourly bid/offer-based

DC optimal power flow (DC-OPF) problems. Transmission grid congestion is managed

by the inclusion of congestion cost components in LMPs.

• At the end of each day D, the ISO settles all of the commitments for the day-ahead

market for day D+1 on the basis of the LMPs for the day-ahead market for day D+1.

• At the end of each day D, each GenCo i uses stochastic reinforcement learning to update

the action choice probabilities currently assigned to the supply offers in its action domain

ADi taking into account its day-D settlement payment (“reward”). In particular, as

depicted in Fig. 2.4, if the supply offer reported by GenCo i on day D results in a

3In the MISO (2008), GenCos each day are actually permitted to report a separate supply offer for each hour
of the day-ahead market. In order to simplify the learning problem for GenCos, the current version of AMES
restricts GenCos to the daily reporting of only one supply offer for the day-ahead market. Interestingly, the
latter restriction is imposed on GenCos by the ISO-NE (2008) in its particular implementation of FERC’s market
design. (Baldick and Hogan, 2002, pp. 18-20) conjecture that imposing such limits on the ability of GenCos to
report distinct hourly supply offers could reduce their ability to exercise seller market power.
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Figure 2.4 AMES GenCos use stochastic reinforcement learning to determine the supply offers

they report to the ISO for the day-ahead market.

relatively good reward, GenCo i increases the probability of choosing this supply offer on

day D+1, and conversely.

• There are no system disturbances (e.g., weather changes) or shocks (e.g., forced generation

outages or line outages). Consequently, the binding financial contracts determined in the

day-ahead market are carried out as planned and traders have no need to engage in

real-time (spot) market trading.

• Each LSE and GenCo has an initial holding of money that changes over time as it accu-

mulates earnings and losses.

• There is no entry of traders into, or exit of traders from, the wholesale power market.

LSEs and GenCos are currently allowed to go into debt (negative money holdings) without

penalty or forced exit.

• The activities of the ISO on a typical day D are depicted in Fig. 2.5. The overall dynamical

flow of activities in the wholesale power market on a typical day D in the absence of system

disturbances or shocks is depicted in Fig. 2.10.
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Figure 2.5 AMES ISO activities during a typical day D

Figure 2.6 Illustration of AMES dynamics on a typical day D in the absence of system dis-

turbances or shocks for the special case of a 5-bus grid
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2.3 Measurement Conundrums for Power Markets

2.3.1 Detection of Seller Market Power

Although the exercise of seller market power in restructured wholesale power markets can

have substantial adverse effects on the efficiency, reliability, and fairness of market operations,

it is difficult to construct measures for its reliable detection. Excellent discussions elaborating

some of the reasons for this can be found in Borenstein et al. (1999), Sheffrin et al. (2004),

(Stoft, 2002, Chapter 4), and Twomey et al. (2005). Here we briefly review the key issues.

On the one hand, the complexity of the rules and regulations governing market operations

in restructured wholesale power markets creates opportunities for GenCos to game the system

to their advantage through strategic behaviors, either individually or in tacit collusion. These

strategic behaviors take two main forms: economic withholding of capacity through a reporting

of higher-than-true marginal costs; and physical withholding of capacity .

Economic withholding of capacity can induce higher prices for cleared supply as well as out-

of-merit-order dispatch, i.e., more expensive generation dispatched in place of less expensive

generation. This results in inefficient (and politically important) transfers of wealth away from

LSEs and their downstream (retail) consumers and towards GenCos.

Physical withholding of capacity can induce higher prices for the remaining offered capacity

and hence higher net earnings for GenCos that withhold only a portion of their capacities. It

can also result in out-of-merit-order dispatch. In addition, however, physical withholding of

capacity increases the chances of inadequacy events in which offered capacity is insufficient to

meet total fixed demand, forcing ISOs to take special actions to avoid the breakdown of power

flow on the grid.

In short, strategic withholding results in distorted price signals as well as the possible need

for special non-market dispatch. This hinders the efficient and fair use of existing resources as

well as the proper assessment of future transmission and generation investment needs.

On the other hand, the physical laws governing power flow on transmission grids mean that

these grids are strongly connected networks. Injections or withdrawals of power at one location

on the grid can have substantial effects on branch flows and bus sensitivities at distant locations.



www.manaraa.com

14

In particular, if an injection of power at a particular grid location leads to grid congestion, this

will cause at least some separation of LMPs across the grid. Indeed, as explained more carefully

in Subsection 2.3.2, under congested conditions LMPs can strictly exceed the marginal cost of

every individual GenCo at the system operating point, despite the complete absence of any

deliberate exercise of seller market power.

Alternatively, a change in the pattern of grid congestion can cause dramatic discontinous

changes in LMP levels even if the overall number of congested branches remains the same.

For example, a load pocket can suddenly emerge in which a GenCo effectively becomes a high-

priced monopolist with respect to the demand for power in its local area because outside power

cannot be transported into this local area. In standard economic terminology, the energy market

has segmented into submarkets, and the electric power quantities offered for sale at locations

within distinct submarkets now effectively represent distinct goods supporting a distinct array

of prices.

Standard economic measures for seller market power have not been designed with these

complex effects in mind. Consequently, their usefulness for the detection of seller market power

in restructured wholesale power markets is not clear.

2.3.2 Measurement of Market Efficiency

The standard economic measurement of “market efficiency” also has to be carefully recon-

sidered for restructured wholesale power markets. Market efficiency means there are no wasted

resources. Wastage can be identified as being of two types: (1) physical wastage, in the sense

that some valued units of resource remain unused; and (2) wastage of value, in the sense that

some units of resource are not being used by those who value them most.

The efficiency of a market can be measured in terms of the “total net surplus” attained

by buyers and sellers. Net buyer surplus is defined to be the maximum amount that a buyer

would have been willing to pay for a quantity of goods q minus the actual payment that the

buyer makes for q. Similarly, net seller surplus is defined to be the payment received by a

seller for the sale of a quantity of goods q minus the minimum payment the seller would have

been willing to accept in payment for q. The total net surplus (TNS) attained in a market M



www.manaraa.com

15

Figure 2.7 Illustration of a competitive equilibrium (Q*,P*) = (5,$65) with corresponding

calculations for net buyer and seller surplus. The range of all possible competitive

equilibria is given by Q*=5 and $60 ≤ P ∗ ≤ $70.

during a specified time period T is then defined to be the sum of the net surplus attained by

all buyers and sellers in M during T.

Market efficiency is said to be achieved in a market if TNS is maximized, since wastage

of resources is then minimized. In standard textbook market settings, TNS is maximized in

competitive equilibrium, that is, when all buyers and sellers in the market take prices as given

in the formulation of their demands and supplies and the market price P* equates total market

demand to total market supply at some common quantity level Q*. The equilibrium quantity

Q* is the summation of all of the cleared quantities q∗i supplied by individual sellers i, that

is, the quantities q∗i that can be scheduled for purchase because for each successive quantity

unit the market price lies between some buyer’s maximum willingness to pay and the seller’s

minimum acceptable price.

See, for example, the depiction of a competitive equilibrium in Fig. 2.7 with accompanying

calculations for net buyer and seller surplus. The demand curve D depicts buyer maximum

willingness to pay for each successive unit demanded, in descending order, and the supply curve
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S depicts seller minimum acceptable sale price for each successive unit supplied, in ascending

order. The eight quantity units offered for sale might all belong to a single seller that is not

capacity constrained. Alternatively, the eight units could represent units offered for sale by

different capacity-constrained sellers—e.g., eight different sellers, each capacity-constrained to

supply at most one unit. In either case only five of these units can be cleared in competitive

equilibrium because buyer maximum willingness to pay drops below seller minimum acceptable

sale price for any additionally offered quantity units.

Economists typically equate a seller’s minimum acceptable sale price with its marginal

cost. It is common to test for the maximization of TNS at a point (Q’,P’) by testing whether

the market price P’ lies between MC−(Q’) and MC+(Q’), the left-hand and right-hand seller

marginal costs evaluated at the market output level Q’.4 If seller marginal cost is a well-defined

continuous function of Q at Q’, then left-hand and right-hand seller marginal costs coincide at

Q’ and this requirement reduces to the standard condition P’=MC(Q’).5 If P’ exceeds right-

hand seller marginal cost at Q’, this raises the possibility that additional buyer/seller surplus

could be extracted from the market by the sale of additional quantity units. It also raises

the possibility that sellers are exercising market power through the deliberate withholding of

capacity.

Due to network externalities, however, this P/MC test must be applied with great caution in

restructured wholesale power markets operating over transmission grids with congestion man-

aged by LMP pricing. To understand why, it is necessary to consider carefully the constructive

derivation of LMPs.

As noted in Section 2.2, the LMP at each bus of the transmission grid is defined as a

right-hand system marginal cost: namely, the least cost to the system of servicing an additional

4Assuming the seller minimum acceptable sale prices in Fig. 2.7 are marginal costs, the depicted competitive
equilibrium (Q*,P*)=(5,$65) satisfies precisely this type of requirement, as follows: $60 = MC−(Q*) < P*=$65
< MC+(Q*) = $80. A similar requirement can be formulated stating that the market price P’ should lie between
the left-hand and right-hand expressions for buyer maximum willingness to pay at Q’. Both of these requirements
follow from the following alternative geometrically-expressed form for the definition of competitive equilibrium
in standard market contexts: A technologically feasible quantity-price combination (Q’,P’) is a competitive
equilibrium if and only if it is an intersection point of the market demand and supply curves with all vertical
and horizontal portions included.

5Marginal cost curves for power markets typically have jump points due to generation capacity constraints.
See (Stoft, 2002, Chapter 1-6) for a careful discussion of marginal cost calculations for power markets.
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megawatt (MW) of electric power demand at that bus. By definition, then, each LMP is

determined only by the marginal GenCos at the system operating point, i.e., by the GenCos

that are capable of supplying additional demand because they are currently operating strictly

below their upper capacity limits.

Consequently, as is well understood, the LMP received by each individual non-marginal (i.e.,

capacity-constrained) GenCo for each MW it sells at its operating point can strictly exceed

its left-hand marginal cost.6 The MWs supplied by these non-marginal GenCos constitute

“inframarginal” quantity units in the terminology of standard microeconomic theory, similar

to the quantity units to the left of Q*=5 in Fig. 2.7.

What is not as well understood, however, is that an LMP can strictly exceed the right-hand

marginal cost of each marginal GenCo if grid congestion requires out-of-merit-order dispatch.

For example, to service an additional MW of demand at some bus k for some hour H in the

presence of grid congestion might require that less expensive generation at some second bus k′

be backed down, e.g., by 2MWs at $20/MWh, and that more expensive generation at some third

bus k′′ be brought up, e.g., by 3MWs at $30/MWh, in order to avoid overloading an already

constrained transmission grid branch. In this case the system marginal cost of servicing an

additional MW of demand at bus k for hour H—i.e., the LMP at bus k for hour H—is $50/h =

[3MWs·($30/MWh) - 2MWs·($20/MWh)]. If the 3MWs at $30/MWh are supplied by a GenCo

that has even more operating capacity available at a marginal cost not exceeding $49/MWh,

then the LMP at bus k strictly exceeds the right-hand marginal cost of this marginal GenCo.

2.3.3 Attainment of Market Efficiency

Subsection 2.3.2 discusses a number of issues that seriously complicate the measurement

of market efficiency for day-ahead markets in restructured wholesale power markets. However,

a potentially more fundamental problem is that the form of the objective function used by

ISOs in these markets to determine LMPs and power commitments renders problematic the

attainment of market efficiency.

6The marginal cost curve of a capacity-constrained GenCo goes vertical at its upper capacity limit, implying
that the right-hand marginal cost of a GenCo operating at its upper capacity limit is effectively infinite.
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This issue is extremely important but fairly technical to explain. For this reason we delay

discussion of this issue until subsection 2.4.3, below, so that we can exploit the previous devel-

opment of a quantitative measure for market efficiency specifically tailored for wholesale power

markets.

2.4 Market Performance Measures

2.4.1 Seller Market Power Measures

Market concentration is the extent to which a relatively large share of market activity is

carried out by a relatively small number of participant firms. Market concentration is routinely

used as an indicator of potential seller market power by the U.S. Department of Justice in

antitrust actions as well as by researchers in academic studies. The intuitive idea is that

anticompetitive behavior by firms is to be expected in a market that is highly concentrated.

Market concentration measures are most often applied to the seller side of a market. Typ-

ically these measures depend critically on two structural attributes: (a) the number of firms

selling into a market; and (b) the relative “market share” of these seller firms as measured either

by output, by operating capacity, or by sales revenues. All else equal, these measures indicate

an increase in concentration either when the number of firms decreases or when the market

share of the largest firms increases. A key unresolved issue in the construction of such mea-

sures is the relative weight that should be attached to the two structural dimensions (a) and (b).

One of the most commonly used market concentration measures is as follows:

• The Herfindahl-Hirschman Index (HHI):

Let sn denote the percentage share of market output of the nth largest firm in a market

with N firms for some time period T. Then

HHI =

N∑
n=1

s2n (2.1)
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Note that market share in (2.1) is defined as the percentage share of market output . Conse-

quently, the corresponding HHI is an ex post measure in the sense it depends on actual market

outcomes.

Larger values for HHI indicate a higher degree of concentration and hence a higher potential

for the exercise of seller market power. For example, if a market consists of just one firm, then

the percentage share of market output for this one firm will be 100% and HHI will equal 10,000

(1002). Conversely, if a market consists of a large number of small firms, the percentage share

of market output for each of these small firms will be close to 0%, implying that HHI will

have a value close to 0. However, the HHI has well known deficiencies as an indicator of seller

market power in any market. For example, it focuses only on the the supply side of a market,

ignoring demand conditions, and it ignores differences in firm costs and the potential entry of

rival firms; see (Pepall et al., 1999, Section 2.1).

One of the most commonly used direct measures for seller market power is the “Lerner

Index,” defined as follows:7

• Lerner Index (LI):

For any firm i supplying a positive quantity q at a per-unit sale price P in some time

period T,

LI(i) =

[
P −MCi(q)

P

]
, (2.2)

where MCi(q) denotes firm i’s true left-hand marginal cost, evaluated at q.

The LI builds on the idea, explained and critiqued in Subsection 2.3, that positive discrepancies

between market price and seller marginal cost indicate the possible exercise of seller market

power through the withholding of capacity.

For later purposes, we now specialize definition (2.2) to wholesale power markets operating

under LMP pricing. Consider a GenCo i located at a bus k(i) in day D. Let pGi denote the

total amount of electric power that GenCo i is cleared to sell in the day-ahead market for

7The definition of the Lerner Index is typically presented without distinguishing between left-hand and right-
hand marginal cost, important for the consideration of capacity-constrained firms; see, e.g., Stoft (Stoft, 2002,
p. 339). In empirical applications, however, the “marginal costs” appearing in Lerner Index calculations appear
universally to be left-hand (historically realized) marginal costs. Consequently, we state the definition in this
form.
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hour H of day D+1. Also, let LMPk(i) denote the LMP at bus k(i) in hour H of day D+1.

By definition, LMPk(i) is the sale price that GenCo i is scheduled to receive for each MW of

its cleared supply pGi. Finally, let MCi(pGi) denote GenCo i’s true left-hand marginal cost,

evaluated at pGi. Then

LI(i) =

[
LMPk(i) −MCi(pGi)

LMPk(i)

]
(2.3)

We next present a measure that considers both the demand and supply sides of a market

by building on the concept of a “pivotal supplier.” A firm i participating in some market M is

called a pivotal supplier if total operating capacity in M without the capacity of firm i is not

sufficient to meet market demand.

Although relevant for any market, the concept of a pivotal supplier has special salience for

restructured wholesale power markets for which much of the bid-in demand is fixed , i.e., not

sensitive to price.8 More precisely, electric power effectively cannot be stored, and imbalances

between demand and supply of electric power on a grid lead to voltage instabilities and ultimate

grid collapse if not swiftly corrected. For these reasons, ISOs in wholesale power markets must

ensure at all times that generation capacity is sufficient to meet total fixed demand. This

requirement means that GenCos in restructured wholesale power markets who are pivotal

suppliers for total fixed demand have tremendous potential to exercise seller market power

through the withholding of their capacity.

The following “Residual Supply Index” tests for the pivotal-supplier status of arbitrary

groupings of firms participating in a market.

• Residual Supply Index (RSI):

Let N denote the collection of all firms participating in a market during some time period

T. For any subset S of N , let TotalCap(S) denote the total operating capacity of the firms

in S during T. Also, let TotalDemand denote total demand during T. Then

RSI(S) =

[
TotalCap(N)− TotalCap(S)

TotalDemand

]
(2.4)

8For example, in the U.S. Midwest Independent System Operator (MISO), LSEs are permitted to submit
demand bids to the ISO for the day-ahead market that have both both price-sensitive and fixed parts. However,
according to demand bid data released by the MISO MISO (2008), at the present time only about 1% of the
total bid-in demand for the day-ahead market is price sensitive.
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If RSI(S) < 1, the indication is that the firms in S have potential seller market power because

total demand cannot be met without their capacity. When total demand and firm capacities are

known in advance, the RSI represents an ex ante measure in the sense that it can be calculated

in advance of actual market outcomes.

The RSI in various forms was first proposed by a group of researchers affiliated with the

Department of Market Analysis at the California Independent System Operator (CAISO). See

(Sheffrin et al., 2004, p. 60) for a report on empirical findings for these measures applied to

CAISO market data. See, also, Mani and Ainspan (2005) for applications of RSI(1) to the New

England wholesale power market (ISO-NE).

Finally, we present the definition of a market performance measure proposed in Nicolaisen

et al. (2001) as a necessary indicator of market power for either a buyer or seller. Here we

specialize the measure to a seller.

• Relative Market Advantage Index (RMAI):

Let NetEarnC(i) denote the net earnings that a seller i would earn in competitive equi-

librium during some time period T, and let NetEarnA(i) denote the net earnings of seller

i in actual market trading during T. Assuming NetEarnC(i) is not zero,

RMAI(i) =

[
NetEarnA(i)−NetEarnC(i)

NetEarnC(i)

]
(2.5)

In order for seller i to have profitably exerted control over the market price during T, RMAI(i)

must necessarily be positively valued. Consequently, RMAI(i) > 0 is a necessary condition for

seller i to have exercised seller market power during T.

2.4.2 Market Efficiency Measure

Recall from Subsection 2.3.2 that market efficiency is said to hold for a market if maximum

extraction of total net surplus (TNS) is achieved. Moreover, for standard market contexts such

as depicted in Fig. 2.7, maximum TNS extraction is achieved in any competitive equilibrium.

Let M denote a standard market context in some time period T. Let TNSC denote the

(maximum) TNS that could be extracted in market M in period T in competitive equilibrium,
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and let TNSA denote the TNS actually extracted in market M during T. Assuming TNSC is

positively valued, an “Operational Efficiency Index” can be defined for market M during T as

follows:

• Operational Efficiency Index (OEI):

OEI =
TNSA

TNSC
(2.6)

If buyers never purchase goods above their maximum willingness to pay and sellers never sell

goods below their minimum acceptable sale price, OEI ranges between 0 and 1 in value with

OEI=1 corresponding to 100% market efficiency.

For later purposes, we now specialize the definitions of net buyer surplus, net seller surplus,

total net surplus, and OEI to markets for electric power. In particular, we consider the case

of J LSEs and I GenCos participating in an ISO-managed day-ahead wholesale power market

operating under LMP pricing.

In standard economic terminology, an LSE that has a positive fixed (price-insensitive)

demand for electric power has a vertical demand curve for these quantity units, implying

an infinite maximum willingness to pay for them. If this fixed demand must be met under

all circumstances, as is true in ISO-managed day-ahead markets, then the LSE obtains the

same infinite benefit from its fixed demand independently of any other market circumstances.

Consequently, this benefit does not help to distinguish between the efficiency of different market

scenarios because in effect it cancels out when the benefits arising under any two market

scenarios are differenced.

For this reason, power economists routinely omit consideration of LSE fixed demand benefits

in the construction of measures designed to evaluate relative market efficiency. A special case

of this is when all LSE demand is fixed and attention is focused solely on minimization of the

total variable costs incurred in satisfying this fixed demand. Here we consider the more general

case, reflective of many actual ISO-managed day-ahead wholesale power markets, in which LSE

demand bids consist of both both fixed and price-sensitive parts.

Consider an LSE j located at a transmission grid bus k(j) in some day D. Let pSLj and pFLj

denote the quantities of electric power that LSE j is cleared to buy in the day-ahead market
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for hour H of day D+1 corresponding to its price-sensitive demand-bid function Dj(p) and its

fixed demand bid, respectively. LSE j’s total cleared demand is thus given by

pLj =
[
pSLj + pFLj

]
(2.7)

Also, let LMPk(j) denote the LMP for bus k(j) in hour H of day D+1. LMPk(j) is the price

that LSE j is committed to pay for each MW of its total cleared demand (2.7).

The net buyer surplus of LSE j corresponding to its total cleared demand (2.7), adjusted to

omit the infinitely-valued benefit corresponding to its fixed demand, takes the following form:

AdjNBSLj =

∫ pSLj

0
[Dj(p)] dp− LMPk(j) · pLj (2.8)

In (2.8), Dj(p) denotes LSE j’s maximum willingness to pay for an increment dp of power,

evaluated at the power level p. Consequently, the integral term measures the benefit gained

by LSE j from the price-sensitive portion pSLj of its total cleared demand pLj , whereas the

far-right term denotes the cost to LSE j for its total cleared demand pLj .

Next consider a GenCo i located at a transmission grid bus k(i) in some day D. Let pGi

denote the quantity of electric power that GenCo i is cleared to sell in the day-ahead market

for hour H of day D+1. Also, let LMPk(i) denote the LMP for bus k(i) in hour H of day

D+1. LMPk(i) is the price that GenCo i is committed to accept in payment for each MW of

its cleared supply pGi.

The net seller surplus of GenCo i corresponding to its cleared supply pGi is therefore given

by

NSSGi = LMPk(i) · pGi −
∫ pGi

0
[MCi(p)] dp (2.9)

In (2.9), MCi(p) denotes GenCo i’s true left-hand marginal cost (minimum acceptable sale

price) for an increment dp of power, evaluated at the power level p. Consequently, the integral

term measures the true variable cost incurred by GenCo i for its cleared supply pGi, whereas

LMPk(i) · pGi measures the payments received by GenCo i for this cleared supply.

The total net surplus attained in the day-ahead market in hour H of day D+1, adjusted by

omission of the infinite benefit corresponding to LSE fixed demand, thus takes the following
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form:

AdjTNS =

J∑
j=1

AdjNBSLj +

I∑
i=1

NSSGi (2.10)

We consider two different calculations of AdjTNS:

• AdjTNSC : AdjTNS calculated under competitive benchmark conditions in which the ISO

knows the true structural attributes of all LSEs and GenCos;

• AdjTNSR: AdjTNS calculated under auction conditions in which the ISO must depend on

the reported demand bids and supply offers of potentially strategic LSEs and/or GenCos

with learning capabilities.

In parallel with (2.6), we then define an “adjusted” operational efficiency index as follows:

AdjOEI =
AdjTNSR

AdjTNSC
(2.11)

The Adjusted OEI (2.11) does not have as straightforward an interpretation as the stan-

dardly defined OEI (2.6). For example, AdjTNS calculated under either competitive or auction

conditions can be negatively valued in the presence of LSE fixed demands since LSE fixed de-

mand payments are included but LSE fixed demand benefits are not. Moreover, as elaborated

in the following section, the standardly assumed ISO objective function for the day-ahead mar-

ket does not guarantee that AdjTNSC equals maximum possible AdjTNS. These issues will be

further addressed in Section 2.6, where we present experimental findings for AdjOEI.

2.4.3 ISO Objective Function and Market Efficiency

It is typically assumed that an appropriate market objective for policy makers is market

efficiency interpreted to mean the maximization of the sum of net buyer and seller surplus,

i.e., total net surplus (TNS). As depicted in Fig. 2.7, TNS in standard market contexts can

be expressed as the area between the market demand curve and the market supply curve, and

maximum TNS is achieved where these curves intersect.

The basic objective typically assumed for ISOs in day-ahead markets is the constrained

maximization of the area between the market price-sensitive demand curve and the market

supply curve as constructed from the reported price-sensitive demand bids and supply offers
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of the participant traders.9 It is commonly believed that the constrained maximization of

this ISO objective function is equivalent to the constrained maximization of adjusted TNS as

constructed in (2.10) and hence comports well with standard economic policy prescriptions for

the achievement of market efficiency. See, for example, (Cramton et al., 2005, Appendix 1.3,

pp. 42-44). However, it will now be shown that this is not necessarily the case.

Consider, for example, an ISO-managed wholesale power market consisting of J LSEs and

I GenCos. Let the objective function of the ISO in day D for hour H of the day-ahead market

in day D+1 be expressed as follows:

BR − CR =
J∑
j=1

∫ pSLj

0

[
DR
j (p)

]
dp−

I∑
i=1

∫ pGi

0

[
MCRi (p)

]
dp (2.12)

In 2.12, DR
j (p) denotes LSE j’s reported price-sensitive demand function, hence the correspond-

ing summed integral expression BR denotes the reported total benefits to LSEs corresponding

to their reported price-sensitive demand bids (i.e., the area under their reported price-sensitive

demand functions up to their cleared demands). MCR
i (p) denotes GenCo i’s reported marginal

cost function, hence the corresponding summed integral expression CR denotes the reported

total variable costs incurred by GenCos (i.e., the area under their reported marginal cost curves

up to their cleared supplies).

The question is whether the objective function (2.12) is equivalent to AdjTNS as constructed

in (2.10). To see why this is not true in general, consider the following. The payments from

LSEs and to GenCos for the day-ahead market in day D+1 are settled through the ISO at the

end of day D. Let ISONetSurplus denote the net payments collected by the ISO in the day-

D settlement for hour H of the day-ahead market in day D+1. Using previously introduced

terminology, ISONetSurplus can be expressed as follows: J∑
j=1

LMPk(j) · pLj −
I∑
i=1

LMPk(i) · pGi

 (2.13)

Combining (2.8), (2.9), (2.10), (2.12), and (2.13), it is seen that

BR − CR =
[
AdjTNSR + ISONetSurplus

]
, (2.14)

9Sometimes additional “unit commitment” costs are also included, such as no-load and start-up costs, but
this does not affect the essential point of this section.
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where AdjTNSR denotes AdjTNS based on reported demand bids and supply offers.

Clearly the maximization of (2.14) subject to generation and transmission constraints will

not typically ensure the maximization of AdjTNS subject to these same constraints. It might

be argued that the inclusion of ISO net surplus in (2.14) along with net buyer and seller

surplus is appropriate, since ISOs are also market participants. However, ISOs are typically

constituted as non-profit organizations, meaning they have a fiduciary responsibility to oversee

energy market operations for the securement of social welfare rather than for the securement

of maximum organizational profits.

Why not simply “correct” the objective function (2.14) by replacing it with AdjTNS (or

AdjTNSR)? The key difficulty here is that the LMPs entering into the expression for AdjTNS

in (2.10) are solved for endogenously within the ISO’s optimization problem as shadow prices

on certain “nodal balance conditions” embodying an important physical constraint on power

flow (Kirchhoff’s Current Law). By construction, these shadow prices measure the marginal

cost to the system of servicing marginal increments of demand at different grid locations. Any

explicit appearance of LMPs as endogenous variables in the ISO’s optimization problem apart

from their role as shadow prices on nodal balance conditions would destroy their interpretation

as shadow prices for these conditions and hence their valid interpretation as system marginal

costs.

Sufficient conditions for equivalence between the constrained maximization of [AdjTNSR +

ISONetSurplus] in (2.14) and the similarly constrained maximization of AdjTNS in (2.10) are

as follows: (1) LSEs and GenCos report non-strategic demand bids and supply offers, implying

that AdjTNSR = AdjTNS; and (2) grid congestion is absent, implying all LMPs collapse to a

single uniform price level. Given condition (2), ISONetSurplus = 0 because the total quantity

of electric power sold equals the total quantity of electric power bought.

How likely are these two conditions to hold? With regard to (1), Li et al. Li et al. (2008b) re-

port AMES experiments indicating that strategic profit-seeking GenCos in restructured whole-

sale power markets typically have an incentive to report supply offers to the ISO that system-

atically misrepresent their true net surplus outcomes. This is the case whether or not grid

congestion is present and whether or not the bid-in demand of LSEs is fixed or price sensitive.
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With regard to (2), grid congestion is quite common within restructured wholesale power

markets in the U.S. and increasingly in other countries as well. In the presence of grid con-

gestion, LMPs can dramatically separate across the grid, hence the prices paid to the ISO

by LSEs can differ substantially from the prices received from the ISO by GenCos. Li et al.

(2008b) report consistently positive ISONetSurplus outcomes in a suite of AMES experiments

for a dynamic 5-bus test case in which grid congestion persistently arises. It is actually a bit

disturbing to realize that maximization of an objective function such as (2.14) could have the

unintended consequence of encouraging the emergence and persistence of grid congestion.

What can be done, then, to ensure that the constrained maximization of [AdjTNSR +

ISONetSurplus] at least approximately achieves the similarly-constrained maximization of Ad-

jTNS? One possible way to help ensure AdjTNSR = AdjTNS would be for an ISO to engage in

suitable monitoring of demand bids and supply offers to discourage strategic reporting. Indeed,

ISOs in the U.S. now routinely have “market monitoring” units for just this purpose.

According to the ISO market reports (PJM (2009),CAISO (2009),MISO (2009),ISO-NE

(2009)) in 2008 for PJM, MISO, ISO-NE and CAISO, the ISO net surplus outcomes are pretty

substantial amounts. PJM reports total congestion costs, interpreted here as the difference

between load payments to the ISO and generation revenues received from ISO, to be $2.66

billion. Congestion cost in MISO for (2008), defined as “the difference in LMP prices across

the interface multiplied by the amount of the (power) transfer,” is approximately $500 million.

A more detailed explanation of net surplus collections in various ISO’s can be found in Li and

Tesfatsion (2010)

The net surplus collections for PJM, MISO, ISO-NE, and CAISO, as detailed in the market

reports, are largely allocated to FTR/CRR holders. For example, as reported in [PJM (2009),

p. 417], PJM allocates its total congestion costs as revenues to FTR holders, including GenCos,

LSEs, and pure speculators with no physical generation or load obligations. Any extra amount

remaining at the end of the year is allocated to LSEs as payment offsets in accordance with load-

ratio shares. Similarly, as reported in [MISO (2009), Section V], MISO distributes its congestion

revenues as payments to FTR holders, including holders of special types of FTRs created to

protect entities with pre-existing agreements to use the transmission system. Surpluses in one
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Figure 2.8 5-bus transmission grid for the dynamic 5-bus test case

month are used to fund shortfalls in other months during each year, with FTR payments being

reduced pro rata if a shortfall persists at the end of the year.

2.5 Experimental Design

All market performance experiments carried out for this study using the AMES test bed

are based on a dynamic 5-bus test case developed by Li et al. (2008b). This test case is

characterized by the following structural, institutional, and behavioral conditions:

• The 5-bus transmission grid configuration is as depicted in Fig. 2.8, with transmission

grid, LSE, and GenCo structural attributes as presented in Li et al. (2008b).10

• In particular, the maximum operating capacities of the five GenCos depicted in Fig. 2.8

are as follows: 110MW for GenCo 1 (G1); 100MW for GenCo 2 (G2); 520MW for GenCo

3 (G3); 200MW for GenCo 4 (200MW); and 600 MW for GenCo 5 (G5). Note that the

next-to-largest GenCo 3 is favorably situated in a potential “load pocket” with respect

to the three LSEs.
10The 5-bus transmission grid depicted in Fig. 2.8 is due to Lally (2002). This grid configuration is now used

extensively in ISO-NE/PJM training manuals to derive quantity and price solutions at a given point in time
assuming ISOs have complete and correct information about grid, LSE, and GenCo structural attributes.
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Figure 2.9 Daily LSE fixed demand (load) profiles for the dynamic 5-bus test case

• Also, GenCo 4 (the “peaking unit”) has the most costly generation. Next in line is GenCo

3. The three remaining GenCos 1, 2, and 5 have more moderate costs.

• The daily fixed demand (load) profiles for the three LSEs are the same from one day to

the next. As depicted in Fig. 2.9, each daily fixed demand profile peaks at hour 17.11

• The learning parameters for each of the five GenCos are set at “sweet spot” values shown

in Li et al. (2008b) to be where the GenCos as a whole earn the highest average daily

net earnings.12 The only factor that changes market outcomes from one day to the next

is GenCo learning.

Since the GenCos rely on stochastic reinforcement learning to determine their supply offers,

multiple runs need to be conducted for each experimental treatment to control for purely

random effects. As in Li et al. (2008b), we conduct thirty runs for each treatment using thirty

distinct random seeds generated using the standard Java “random” class.13 Moreover, only

11These profile shapes are adopted from a case study presented in (Shahidehpour et al., 2002, p. 296-297).
12In particular, we use the GenCo Case(1,1) learning parameter values characterized by α = 1 and β = 100

in Li et al. (2008b).
13See Li et al. (2008b) for these 30 numerical seed values.
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Figure 2.10 Illustration of the construction of the R ratio for measuring relative demand-bid

price sensitivity for the special case R=0.50

one of the five possible stopping rules in AMES(V2.01) was flagged for each experimental run:

namely, the stopping rule requiring that each run terminate at a user-designated day DMax.

The value set for DMax in each run was 1000.

The key treatment factor we consider in this study is the ratio R of maximum potential

price-sensitive demand to maximum potential total demand. More precisely, for each LSE j

and each hour H, let

Rj(H) =
SLMaxj(H)

MPTDj(H)
. (2.15)

In (2.15) the expression SLMaxj(H) denotes LSE j’s maximum potential price-sensitive demand

in hour H as measured by the upper bound of its purchase capacity interval, and

MPTDj(H) = [pFLj(H) + SLMaxj(H)] (2.16)

denotes LSE j’s maximum potential total demand in hour H as the sum of its fixed demand

pFLj(H) and its maximum potential price-sensitive demand SLMaxj(H) in hour H. The con-

struction of the R ratio is illustrated in Fig. ??.
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For our price-sensitive demand experiments we start by setting all of the R values (2.15)

for each LSE j and each hour H equal to R=0.0 (the pure fixed-demand case). We then

systematically increase R by tenths, ending with the value R=1.0 (the pure price-sensitive

demand case). A positive R value indicates that the LSEs are able to exercise at least some

degree of price resistance.

The maximum potential price-sensitive hourly demands SLMaxj(H) for each LSE j are

thus systematically increased across experiments. However, we control for confounding effects

arising from changes in overall demand capacity as follows: For each LSE j and each hour H,

the denominator value MPTDj(H) in (2.16) is held constant across experiments by appropriate

reductions in the fixed demand pFLj(H) as SLMaxj(H) is increased. Specifically, MPTDj(H) is

set equal across all experiments to BPFLj(H), the hour-H fixed-demand level BPF (H) for LSE

j specified in Li et al. (2008b) for the dynamic 5-bus test case. Consequently, for each tested

R value,

pFLj(H) = [1-R] ∗ BPFLj(H) ; (2.17)

SLMaxj(H) = R ∗ BPFLj(H). (2.18)

Moreover, as R is incrementally increased from R=0.0 to R=1.0, we control for confounding

effects arising from changes in the LSEs’ price-sensitive demand bids by holding fixed the

ordinate and slope values {(cj(H),dj(H)): H=00,...,23} for each LSE j. A listing of the specific

numerical values used can be found in Li et al. (2008b).

2.6 Experimental Findings

This section uses the experimental design outlined in Section 2.5 for the dynamic 5-bus

test case to conduct comparative tests of the five market performance measures developed in

Section 2.4.

In particular, we examine outcomes for the Herfindahl-Hirschman Index (HHI) as defined

in (2.1), the Lerner Index (LI) as defined in (2.3), the Residual Supply Index (RSI) as defined

in (2.4) with only fixed demands included in total demand, the Relative Market Advantage

Index (RMAI) as defined in (2.5), and the Adjusted Operational Efficiency Index (AdjOEI) as
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defined in (2.11). Average results are reported for R values ranging from R=0.0 (100% fixed

demand) to R=1.0 (100% price-sensitive demand).

Average HHI and LI results are reported in Tables 2.1 through 2.4 for both the competitive

benchmark case (no GenCo learning) and the learning GenCos case. The averages are based

on 30 runs, each consisting of 1000 time periods (“days”).14 The only factor causing changes in

market outcomes over time in the dynamic 5-bus test case is GenCo learning, hence averages

are separately reported for days 10, 50, 100, and 1000 in Tables 2.2 and 2.4 to check the effects

of GenCo learning on HHI and LI valuations over time.

As noted in Section 2.4.1, larger HHI values indicate a higher degree of market concen-

tration. Tables 2.1 and 2.2 show that, for each tested R value, HHI is generally higher under

GenCo learning. Moreover, for each indicated day, HHI systematically increases as R increases.

The latter occurs because LSE total cleared demand (fixed plus price sensitive) systematically

decreases as R increases, which results in the larger GenCos 3 and 5 supplying a larger share of

the decreasing electric power output. A key question, addressed below, is whether this higher

indicated concentration at higher R values in fact indicates a greater exercise of seller market

power.

By design, LI is meant to vary directly with seller market power. That is, a higher LI value

is meant to indicate a greater exercise of seller market power.

The average LI results reported in Tables 2.3 and 2.4 systematically decrease with increases

in R for each indicated day, which suggests that seller market power decreases with increases

in the price sensitivity of LSE demand. The intuition is that the greater price-sensitivity of

demand at higher R values gives LSEs a greater ability to resist higher prices and hence, results

in a lowering of average LMP values. This intuition is supported by the AMES experimental

findings reported in Li et al. (2008b); average LMP systematically declines (along with LSE

total cleared demand) as R increases from R=0.0 to R=1.0 either with or without GenCo

learning, although average LMP is much higher with GenCo learning than without for each

tested R value.

Comparing these average LI results with the earlier discussed findings for average HHI, it

14See Appendix 2.7 for a more detailed explanation of these average outcome calculations.
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seems fair to say that HHI is a misleading indicator of seller market power in the context of

the dynamic 5-bus test case. A similar conclusion is reached by Borenstein et al. (Borenstein

et al., 1999, Section 4) for other market contexts. Conversely, for all of its conceptual faults,

the direction of change in average LI correctly indicates the direction of change in seller market

power.

On the other hand, note in Table 2.4 that average LI for the learning GenCos case system-

atically increases from day 10 to day 1000 for R=0.0 (100% fixed demand), almost doubling

by day 1000. However, average LI first increases and then declines back approximately to its

original level for all positive R values (i.e., all cases for which LSE total cleared demand is par-

tially price sensitive). This suggests that price sensitivity of demand is preventing the learning

GenCos from reaching and sustaining the high seller market power levels achieved with 100%

fixed demand.

RSI values are reported in Table 5.3 for the two largest GenCos 3 and 5, assuming only

fixed demands are considered in the measure for LSE total demand. Since LSE fixed demand

profiles and GenCo capacities are exogenously given and constant from one day to the next

in the dynamic 5-bus test case, RSI is an ex ante measure whose values are also exogenously

determined and constant from one day to the next, independently of whether GenCos learn or

not. Consequently, it suffices to report RSI values for a typical day D with attention limited

to R values for which at least a portion of LSE demand is fixed.

By design, RSI is meant to vary inversely with seller market power. That is, a higher RSI

value for some GenCo is meant to indicate a smaller potential for the exercise of seller market

power. Moreover, an RSI value less than 1 for some GenCo is interpreted to mean that this

GenCo has an absolute potential to exercise seller market power because LSE fixed demand

cannot be met without this GenCo’s capacity.

All of the RSI results in Table 5.3 follow directly from the definition of RSI. In particular,

RSI is smaller for the larger GenCo 5 for each hour and each tested R value. Moreover, for each

hour, each GenCo’s RSI value systematically increases with increases in R (i.e., with decreases

in fixed demand), a direct reflection of the increasing ease with which the smaller fixed demand

can be met from remaining GenCo capacity. Consequently, the implication from these RSI
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results is that seller market power decreases with increases in R.

Moreover, RSI systematically dips down for both GenCos in a neighborhood of the peak

demand hour 17 for each tested R value, with RSI falling below 1 in this time interval for

R=0.0 (100% fixed demand). Consequently, the implication is that the risk of seller market

power is greatest around the peak demand hour 17, particularly so for the case in which all

LSE demand is fixed.

How do the RSI results reported in Table 5.3 compare with the LI results reported in

Tables 2.3 and 2.4? Both sets of results indicate that seller market power decreases with

increases in R. Since LI is a direct indicator of seller market power and RSI is an inverse

indicator of seller market power, these results support the empirically-based finding of (Sheffrin

et al., 2004, pp. 62-63) that the measures LI and RSI are negatively correlated.

Note, however, that RSI exceeds 1 for both GenCos in all hours as soon as R exceeds 0.0,

i.e., as soon as a portion of LSE total cleared demand is price sensitive. An unresolved issue

is the extent to which seller market power can be exercised by GenCos when their RSI values

exceed 1.

As recognized by Sheffrin et al. (2004), a potential weakness of the RSI measure (and the

pivotal supplier concept more generally) is that transmission grid congestion is not taken into

account. Consequently, RSI does not reflect the possibility that a load pocket situation can

emerge that permits a GenCo to exercise substantial seller market power even though its RSI

value exceeds 1.

Indeed, based on data from the California wholesale power market, (Sheffrin et al., 2004,

p. 63) devise the following rule of thumb for a “workably competitive market:” The RSI of the

largest supplier must not be less than 1.1 for more than 5% of the hours in a year. However,

Table 5.3 indicates that the largest GenCo 5, as well as the next-largest GenCo 3, have RSI

values that are well in excess of 1.1 for R values ranging from 0.2 to 0.8. Is it correct to say

that the day-ahead market for the dynamic 5-bus test case is “workably competitive” for these

higher R values?

The LI results in Table 2.4 suggest, to the contrary, that significant seller market power

is still being exercised at these higher R values in the learning GenCos case. The conceptual
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problems with LI detailed in Section 2.3 would normally suggest that caution be exercised in

interpreting these LI results. However, the detailed results for GenCo reported supply offers

obtained by Li et al. (2008b) in a parallel set of AMES experiments clearly show that all of the

learning GenCos are indeed exercising at least some seller market power at all tested R values,

including R=1.0 (100% price-sensitive demand).

Consider, next, the average RMAI results reported in Table 2.6. By construction, RMAI

is intended to measure the ability of sellers to increase their daily net earnings relative to a

competitive pricing situation. In particular, applied to the dynamic 5-bus test case, RMAI

measures the ability of the learning GenCos to increase their daily net earnings (i.e., their daily

net seller surplus) through strategic reporting of supply offers in comparison to the competitive

benchmark case in which the ISO knows the GenCos’ true costs and capacities. This increase

in daily net earnings is normalized by dividing through by the daily net earnings of the GenCos

in the competitive benchmark.

The average RMAI results reported in Table 2.6 for R=0.0 (100% fixed demand) indicate

that the learning GenCos are able to substantially improve their daily net earnings over time

relative to the competitive benchmark. On the other hand, for higher R values their daily net

earnings first increase relative to the competitive benchmark but then fall back.

This pattern for average RMAI appears similar to the pattern seen in Table 2.4 for average

LI. However, the RMAI standard deviations reported in Table 2.6 are extremely large. This

suggests the need to look at the RMAI findings at a more disaggregated level.

For example, one possible cause of the high RMAI standard deviations in Table 2.6 could be

that the 30 simulation runs upon which the average RMAI results are based, in fact, constitute

two or more distinct “clusters” converging to two or more distinct “attractors” with distinctly

different GenCo daily net earnings outcomes relative to the competitive benchmark. The low-

earnings attractor could represent cases in which interaction effects among the five learning

GenCos hinder the GenCos from co-learning how to implicitly collude on reported supply

offers that ensure high daily net earnings.

The average RMAI results reported in Table 2.6 for each indicated day also show that

average RMAI exhibits a rather substantial increase as R varies from R=0.0 to R=1.0, i.e.,
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as LSE total cleared demand moves from 100% fixed demand to 100% price-sensitive demand.

On the other hand, an examination of the corresponding results for simple Market Advantage

(MA) (i.e., the numerator of RMAI) in Table 2.7 shows the more intuitively expected finding

that—in level rather than relative terms—the daily net earnings of the GenCos substantially

decrease as R varies from R=0.0 to R=1.0.

The problem here is that the denominator of RMAI is not invariant to changes in R, implying

that two potentially offsetting effects are occurring at the same time. As R increases from

R=0.0 to R=1.0, LSE total cleared demand decreases rather substantially in the competitive

benchmark, as do the corresponding daily net earnings of the GenCos. This means that the

decreasing gains from learning at each successively higher R value are being normalized by

an ever smaller competitive benchmark base value. Table 2.6 suggests that the latter effect

dominates, resulting in larger RMAI values as R increases. The bottom line is that cross-R

comparisons of average RMAI are not very meaningful.

Finally, consider the average AdjOEI results reported in Table 2.8. These results display

systematic patterns that resemble some of the patterns seen for average MA in Table 2.7. For

example, for R=0.0 (100% fixed demand), AdjOEI increases for each successive indicated day.

Moreover, for each indicated day, AdjOEI exhibits a rather substantial decrease as R varies

from R=0.0 (100% fixed demand) to R=1.0 (100% price sensitive demand).

Also, since all of the average AdjOEI results in Table 2.8 are positively valued, the numerator

and denominator for AdjOEI must have the same signs. Consequently,

(AdjOIE < 1) ⇔ | AdjTNSR | < | AdjTNSC | (2.19)

Note that AdjOEI drops below 1 at R=1.0 for each successive indicated day.

However, due to the conceptual problems analyzed at some length in Section 2.4.2, it is

difficult to use relation (2.19) to draw inferences about operational efficiency. The critical

difficulty here is that the denominator of AdjOEI—namely, AdjTNSC—does not necessarily

represent maximum AdjTNS. Rather, AdjTNSCrepresents the AdjTNS outcome for the com-

petitive benchmark case when the ISO undertakes the constrained maximization of [AdjTNS

+ ISONetSurplus]. In the presence of grid congestion, ISONetSurplus can depart substantially
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from zero. For example, in parallel AMES experiments reported in Li et al. Li et al. (2008b) for

the dynamic 5-bus test case, the branch connecting bus 1 to bus 2 is nearly always congested

around the peak load hour 17 for both the competitive benchmark and learning GenCos cases,

resulting in large positive ISONetSurplus outcomes.

The bottom line is that the denominator of AdjOEI needs to be replaced with a more

reliable proxy for maximum achievable adjTNS.

2.7 Calculation of Reported Data Averages and Standard Deviations

Below we explain how we obtained the average Lerner Index (LI) results reported in Ta-

ble 2.4, together with standard deviations, for any specified day D and any specified R value.

Average and standard deviation calculations for the remaining ex post market performance

measures are similarly obtained.

First, for each run r, for each hour H of day D, and for each GenCo i with a positive cleared

power supply pGi for run r during hour H, determine GenCo i’s Lerner Index LI(i,r,H,D) as

in (2.3). Second, for each hour H and for each GenCo i, determine the average of GenCo i’s

Lerner Indices LI(i,r,H,D) across all of the runs r for which he had a positive cleared power

supply for hour H. Third, for each hour H, determine the average of these run-averaged Lerner

Indices across all GenCos i who have a positive cleared power supply during hour H for at least

one run r. Finally, determine the average of these GenCo-averaged and run-averaged Lerner

Indices across all 24 hours H to get AvgLI(D).

For example, if all of the five GenCos have positive cleared supplies for each hour H of day

D in each run r, AvgLI(D) can be expressed as follows:

AvgLI(D) =

[∑23
H=00

∑5
i=1

∑30
r=1[LI(i, r,H,D)]

]
24 ∗ 5 ∗ 30

(2.20)

The corresponding standard deviation StDevLI(D) is then calculated using the “N” defi-

nition (i.e., division by the total number N=[24*5*30] of summed terms rather than N-1), as

follows: √√√√[∑23
H=00

∑5
i=1

∑30
r=1[LI(i, r,H,D)−AvgLI(D)]2

]
24 ∗ 5 ∗ 30

(2.21)
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Table 2.1 Dynamic 5-Bus Test Case: Herfindahl-Hirschman Index (HHI) results for a typical

day D for the competitive benchmark case (no GenCo learning) as R varies from

R=0.0 (100% fixed demand) to R=1.0 (100% price-sensitive demand)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0

D 4,037.48 4,190.91 4,640.96 5,418.82 6,422.01 6,558.37

(92.33) (287.38) (649.97) (823.19) (585.55) (453.14)

Table 2.2 Dynamic 5-Bus Test Case: Average Herfindahl-Hirschman Index (HHI) results with

standard deviations on successive days for the learning GenCos case as R varies from

R=0.0 (100% fixed demand) to R=1.0 (100% price-sensitive demand)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0

10 4,314.10 4,848.53 6,135.92 6,933.69 7,263.76 7,660.50

(910.52) (1,406.28) (1,883.14) (2,109.11) (2,235.60) (2,158.85)

50 4,069.60 4,548.91 5,377.97 6,300.46 6,740.58 7,266.92

(970.27) (1,528.33) (2,174.75) (2,347.72) (2,426.82) (2,529.18)

100 3,945.12 4,654.25 6,052.07 6,742.74 6,992.86 7,806.67

(758.27) (1,291.36) (1,978.25) (2,175.19) (2,165.93) (2,150.25)

1000 3,141.35 4,619.71 5,977.48 6,953.54 7,200.11 7,750.79

(916.17) (1,501.05) (1,987.65) (2,230.85) (2,316.82) (2,060.53)

Table 2.3 Dynamic 5-Bus Test Case: Lerner Index (LI) results for a typical day D for the

competitive benchmark case (no GenCo learning) as R varies from R=0.0 (100%

fixed demand) to R=1.0 (100% price-sensitive demand)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0

D 0.0053 0.0035 0.0029 0.0022 0.00 0.00

(0.0431) (0.0383) (0.0320) (0.0237) (0.00) (0.00)
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Table 2.4 Dynamic 5-Bus Test Case: Average Lerner Index (LI) results with standard de-

viations on successive days for the learning GenCos case as R varies from R=0.0

(100% fixed demand) to R=1.0 (100% price-sensitive demand)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0

10 0.3098 0.2961 0.2498 0.1837 0.1589 0.1338

(0.2646) (0.2535) (0.2432) (0.2181) (0.2035) (0.1866)

50 0.3356 0.3271 0.3206 0.2542 0.2173 0.1610

(0.2905) (0.2734) (0.2680) (0.2622) (0.2482) (0.2142)

100 0.3979 0.3286 0.2816 0.2364 0.2024 0.1491

(0.3169) (0.2657) (0.2571) (0.2497) (0.2291) (0.1992)

1000 0.6049 0.3200 0.2433 0.1873 0.1621 0.1266

(0.2861) (0.2892) (0.2517) (0.2321) (0.2209) (0.1947)

Table 2.5 Dynamic 5-Bus Test Case: Residual Supply Index (RSI) values by hour for the two

largest GenCos 3 and 5 during a typical day D for the learning GenCos case as R

varies from R=0.0 (100% fixed demand) to R=0.80 (20% fixed demand)

R=0.0 R=0.2 R=0.4 R=0.6 R=0.8
Hour RSI(G3) RSI(G5) RSI(G3) RSI(G5) RSI(G3) RSI(G5) RSI(G3) RSI(G5) RSI(G3) RSI(G5)

00 1.12 1.03 1.40 1.29 1.87 1.72 2.81 2.58 5.61 5.17
01 1.22 1.12 1.52 1.40 2.03 1.87 3.04 2.80 6.08 5.60
02 1.29 1.19 1.61 1.48 2.15 1.98 3.22 2.96 6.44 5.93
03 1.33 1.22 1.66 1.53 2.21 2.04 3.32 3.05 6.63 6.11
04 1.37 1.26 1.71 1.57 2.28 2.10 3.42 3.15 6.84 6.30
05 1.35 1.24 1.68 1.55 2.25 2.07 3.37 3.10 6.73 6.20
06 1.33 1.22 1.66 1.53 2.21 2.04 3.32 3.05 6.63 6.11
07 1.25 1.15 1.56 1.44 2.08 1.92 3.13 2.88 6.25 5.76
08 1.09 1.01 1.37 1.26 1.82 1.68 2.74 2.52 5.47 5.04
09 0.99 0.92 1.24 1.15 1.66 1.53 2.49 2.29 4.97 4.58
10 0.97 0.90 1.22 1.12 1.62 1.49 2.43 2.24 4.86 4.48
11 0.96 0.89 1.20 1.11 1.60 1.48 2.41 2.21 4.81 4.43
12 0.97 0.90 1.22 1.12 1.62 1.49 2.43 2.24 4.86 4.48
13 0.99 0.92 1.24 1.15 1.66 1.53 2.49 2.29 4.97 4.58
14 1.01 0.93 1.26 1.16 1.68 1.54 2.52 2.32 5.03 4.63
15 1.01 0.93 1.26 1.16 1.68 1.54 2.52 2.32 5.03 4.63
16 0.96 0.89 1.20 1.11 1.60 1.48 2.41 2.21 4.81 4.43
17 0.88 0.81 1.09 1.01 1.46 1.34 2.19 2.02 4.38 4.03
18 0.91 0.84 1.14 1.05 1.52 1.40 2.28 2.10 4.56 4.20
19 0.92 0.85 1.15 1.06 1.54 1.41 2.30 2.12 4.61 4.24
20 0.93 0.86 1.16 1.07 1.55 1.43 2.33 2.14 4.66 4.29
21 0.95 0.88 1.19 1.10 1.59 1.46 2.38 2.19 4.76 4.38
22 1.01 0.93 1.26 1.16 1.68 1.54 2.52 2.32 5.03 4.63
23 1.08 0.99 1.35 1.24 1.80 1.66 2.70 2.49 5.40 4.98
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Table 2.6 Dynamic 5-Bus Test Case: Average Relative Market Advantage Index (RMAI)

results with standard deviations on successive days for the learning GenCos case as

R varies from R=0.0 (100% fixed demand) to R=1.0 (100% price-sensitive demand)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0

10 139.06 424.86 719.19 2,006.50 1,873.17 3,116.74

(416.49) (1,201.19) (2,449.79) (6,627.53) (6,308.01) (11,478.58)

50 276.60 697.52 1,524.85 3,443.01 2,649.94 3,707.51

(748.42) (2,112.42) (4,608.18) (10,471.74) (8,590.80) (11,909.11)

100 362.40 569.93 899.26 2,379.93 2,348.32 3,069.37

(829.61) (1,523.32) (2,724.74) (6,752.46) (6,817.43) (10,091.30)

1000 878.59 906.97 776.06 1,968.14 1,737.53 2,918.16

(1,513.36) (2,906.84) (2,657.66) (6,590.91) (6,389.19) (12,095.18)

Table 2.7 Dynamic 5-Bus Test Case: Average Market Advantage (MA) results with standard

deviations on successive days for the learning GenCos case as R varies from R=0.0

(100% fixed demand) to R=1.0 (100% price-sensitive demand)GenCo MAI values

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0

10 146,808.50 69,037.57 32,372.44 21,121.70 15,277.52 8,274.85

(296,766.02) (106,469.42) (48,622.70) (40,103.79) (27,527.92) (16,626.61)

50 175,500.45 69,575.46 43,939.71 27,184.67 16,558.95 7,717.03

(353,928.49) (88,212.41) (63,760.51) (45,737.52) (26,863.22) (15,060.39)

100 307,262.12 68,976.70 36,528.33 24,177.05 16,067.05 8,172.46

(556,696.68) (97,491.68) (59,562.84) (43,029.44) (27,086.31) (16,330.44)

1000 469,927.68 94,377.59 34,959.28 22,404.63 15,472.34 8,274.95

(1,513.36) (165,337.31) (59,932.77) (42,864.65) (27,334.08) (16,171.00)

Table 2.8 Dynamic 5-Bus Test Case: Average Adjusted Operational Efficiency Index (Ad-

jOEI) results with standard deviations on successive days for the learning GenCos

case as R varies from R=0.0 (100% fixed demand) to R=1.0 (100% price-sensitive

demand)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0

10 2.5045 2.1544 1.7395 1.2741 2.4764 0.6155

(1.3451) (1.0462) (0.6554) (0.1981) (1.2885) (0.2203)

50 2.9325 1.8717 1.5878 1.3599 2.8254 0.5936

(1.8837) (0.5695) (0.4312) (0.3191) (1.8416) (0.2677)

100 4.6678 1.8240 1.5484 1.2747 2.4697 0.6299

(2.4285) (0.9039) (0.5006) (0.2716) (1.5602) (0.2424)

1000 6.0972 2.6831 1.6238 1.2289 2.2098 0.6709

(1.1949) (1.8110) (0.7226) (0.2212) (1.2518) (0.2358)



www.manaraa.com

41

CHAPTER 3. Financial Risk Management in Electric Restructured Power

Markets: Literature Review

3.1 Introduction to Restructured Power Markets

This chapter presents a survey of work done by various researchers who investigate the risk

management issues of market participants. The first half of this chapter focuses on electric

power derivatives and their pricing, providing a concise review of various models developed to

predict/forecast spot prices. The second half discusses the use special financial instruments

calledFinancial Transmission Rights (FTRs) in dealing with price risks and the associated

issues of market efficiency.

The literature review/essay is organized as follows. In section 2, a brief review of the need for

hedging in deregulated power markets is presented. In section 3, a summary of characteristics

idiosyncratic to electric power markets is presented, followed by a review of various models

used by different researchers to price power derivatives. In section 4, a brief description of the

causes of congestion risk is presented followed by the definition of FTRs. In section 5, the risk

hedging function of FTRs is presented in some detail. Section 6 presents different ways that

market participants can avail to acquire FTRs. Section 7 presents criticism of the FTR auction

model as related to its hedging functionality. Section 8 presents a survey of research on market

power exacerbation due to FTRs, and also the implications of ISO’s FTR allocation policies on

the overall market efficiency. Section 9 presents a survey of research on transmission expansion

incentives provided by issuing of FTRs.
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3.2 Electric Power Derivatives

Electric power is not a tradeable asset in the classical sense since storage costs are pro-

hibitively high. This is a very fundamental factor distinguishing electric power markets from

other markets. Hydro-electricity can be argued to provide “storable” electricity because of the

water held by a dam. However, only 6% of electricity production in the US comes from hydro-

electric power plants and hence, can be neglected. The non-storability feature of electricity

adds volatility to electric power spot prices because inventories cannot be used to smooth de-

mand or supply shocks. However, the absence of storage lends predictability to inter-temporal

variation in electric power prices, such as between daytime and nighttime.

The transmission constraints, as also the physics governing the functioning of underlying

power grid affect very much the geographical extent of the market. These constraints make

the transportation of electricity extremely uneconomical among certain regions. The electric

power contracts and prices thus become extremely localized, i.e. strongly dependent of local

demand and supply conditions.

Price spikes can appear abruptly and erratically in electric power markets. The price spikes

generally prevail for a very short time (hours), mostly due to sudden supply/demand shocks

and then return to “normal” levels. Electric power prices are believed by many to follow mean-

reverting process. However, even accounting for seasonal variation, price spikes can appear at

times due to generation and/or transmission line outages.

As a consequence, market for financial instruments has been created to allow the market

participants to hedge against price risks. The basic tradeable instruments in the electric power

markets are forward and futures contracts with delivery of electricity over a period of time.

The arbitrage opportunities across time and space, which are based on storability and trans-

portability are extremely limited, if not totally eliminated in electric power markets. Hence,

the relationship between spot and future electric power prices is not the same as for other

commodities. The issues mentioned above are idiosyncratic to electricity markets and magnify

the complexity of forecasting future spot prices or pricing of derivatives.
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3.3 Pricing of Electric Power Derivatives

3.3.1 Electricity versus Other Commodity Pricing

As explained by Eydeland and Geman (1998), the following problems occur in pricing elec-

tric power derivatives because of non-storability, which are not common to other commodities.

• The notion of convenience yield was introduced by the economists Kaldor and Working

to capture the benefit from owning a capacity minus the cost of storage. However, due to

prohibitively high storage costs the idea of convenience yield cannot be used in valuation

of electric power options.

• The no-arbitrage argument used to establish a relationship, which prevails at equilibrium,

between spot and future prices of stocks etc., breaks down in the case of electricity

markets. The no-arbitrage models rely on the asset to be bought (sold) at time t and

held until maturity T .

• Another consequence of non-storability is that the famous delta-hedging method cannot

be implemented in electricity markets as it entails holding commodity for a certain time.

3.3.2 Electricity Price Patterns

Various models developed by researchers to value electric power derivatives recognize the

following patterns in electricity prices. These patterns have been observed in all the deregulated

markets to varying degrees.

• Seasonality: It is a well established fact that electric energy consumption is the highest

during summer months.

• Mean Reversion: Electric power prices can typically be approximated by estimating pro-

duction costs. Unless a systematic market-wide increase in production costs occurs, the

electric power prices should hover around the respective production costs under normal

demand conditions. Hence, the prices should stabilize around average production costs

over time.
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• Small fluctuations around the mean due to intra-day difference in demand or weather

conditions. For example, there is a noticeable and consistent difference between daytime

and nighttime prices.

• Price spikes are observed rather frequently due to sudden demand or supply shocks.

However, these price increases are not permanent. The most famous example is that of

the US midwest in 1998 when spot prices jumped from about $30-40 per MWh to more

than $2000-4000 per MWh in a matter of hours. The reasons cited for the same include

shutting down of nuclear power plant in Ohio due to tornadoes. The prices returned to

somewhat normal level of about $200 per MWh in a couple of days.

Any attempt to reasonably value power derivatives must account for the above mentioned

trends, with mean reversibility and jumps being the most important factors.

3.3.3 Pricing Models

To price electricity derivatives, it is necessary to characterize the evolution of the price of

electricity through time. The pricing approaches generally fall into two classes of models: spot-

based models and forward-based models. Spot models are appealing since they tend to be quite

tractable and also allow for a good mathematical description of the problem in question. In

Eydeland and Geman (1998) the authors present a diffusion process with stochastic volatility,

which accounts for mean reversion, and the spot prices follow Brownian motion. The model

can be written as,

dS(t) = µ(St, t)dt+ σS(t)dWt (3.1)

where µ(St, t) is the mean reverting component and Wt is a Brownian motion. The term σ is

a constant. Significant contributions have been made by Schwartz (1997), who introduces an

Ornstein-Uhlenbeck type of model, which accounts for the mean reversion of prices. In Lucia

and Schwartz (2002) the authors extend the model to a two-factor model, which incorporates

a deterministic seasonal component as well. The class of diffusion models, as noted by Barlow

(2002), do not give rise to price spikes as noticed in California or Alberta markets.
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Geman (1994) notes, “Since extreme temperatures, and hence, an extreme power demand,

happen to coincide with outages in power generation and/or transmission, the dynamics of

electricity spot prices can be advantageously represented by a jump-diffusion process.” In a

jump diffusion model, price change can be divided into the following: (1) A continuous price

diffusion process modeled by Geometric Brownian Motion with mean reversion and a volatility

term structure. This component captures the electric power price dynamics without spikes

(as detailed before), and (2) A discontinuous jump process modeled by a Poisson distribution,

which might be a result of outages, transmission constraints, etc. Eydeland and Geman (1998)

present a simple representation of a jump-diffusion process written as follows.

dSt = µStdt+ σStdWt + UStdNt (3.2)

where the diffusion component is represented by a Poisson process (Nt) with a random magni-

tude. U is a real valued random variable representing the sign and magnitude of the jump. The

model so described is the same as Merton’s jump diffusion model, which assumes independence

between the two components. The assumption though, is not a fair one in electricity markets,

for example, prices are highly unlikely to spike at nighttime with low levels of demand.

Geman and Roncoroni (2006) follow similar process modeling spikes via jump process and

are able to successfully fit spot prices collected from several markets. Cartea and Figueroa

(2005) present a model that captures mean reversion, jumps and seasonality while calibrating

the parameters to the England and Wales market. Barlow (2002) presents a model of pure

diffusion model for spot electric power prices, which exhibit spikes. The model starts from a

simple demand and supply model for electricity and uses nonlinear Ornstein-Uhlenbeck type of

mean-reverting process. The model, however, is stationary and does not provide a satisfactory

relationship between spot and futures prices.

Routledge et al. (1999) consider equilibrium model of electricity contracts. They focus on

linkage between natural gas and electricity markets (spark spread) because natural gas can be

stored and converted into electricity.
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3.3.4 Risk Premium

Financial markets have typically been established to facilitate the transfer of risk, where

forward premium represents the compensation required, in equilibrium, by those willing to

bear the risk. Given that spikes are relatively more frequent in electricity markets compared to

other commodities, electric power forward prices must contain risk premium. Empirical work

done by Pirrong and Jermakyan (2000) provides evidence of existence of risk premia (seasonal)

in Pennsylvania, New Jersey, Maryland (PJM) markets.

Bessembinder and Lemmon (2002) argue that the arbitrage argument, which can be made

for other commodities, does not hold for pricing electric power derivatives. The well known

cost-of-carry relationship linking spot and forward prices cannot be applied because electricity

cannot be stored (economically) to be later sold at forward price. Hence the cost of carry

approach needs to be reformulated as done by Geman:

ForwardPrice = SpotPrice+ π(t, T ) (3.3)

where risk premium is represented by π(t, T ) and depends on time to maturity of the forward

contract. Bessembinder and Lemmon (2002) present an equilibrium model implying that for-

ward power price is downward biased predictor of the future spot price if the expected power

demand is low and demand risk is moderate. The forward premium increases when the ex-

pected demand or demand variance is high. They present some empirical evidence of the same

for forward prices during summer months in PJM market. Longstaff and Wang (2004) also

point out the existence of very high risk premiums paid in PJM electricity forward markets to

compensate the sellers for extreme shocks.

3.4 Financial Risk Management in Wholesale Power Markets

Based on Yu et al. (2010) we present a scenario that considers the short-term risk-management

problems faced by a GenCo operating in a wholesale power market with congestion managed

by LMP (see Hogan (1992b), Litvinov et al. (2004),Finney et al. (1997),Wu et al. (2005),Cheng

and Overbye (2006),Chen et al. (2002),Conejo et al. (2005)). Consider the 5-bus scenario de-

picted in Fig. 3.1. In this scenario a particular GenCo owns a nuclear power plant, G3, located
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Figure 3.1 Illustrative risk management problem for a GenCo operating in a 5-bus wholesale

power market under LMP.

at bus 3, and a coal-fired power plant, G4, located at bus 4. Other generation plants G1, G2,

and G5 are located at buses 1 and 5. There are also three LSEs 1, 2, and 3 located at buses 2,

3, and 4 whose demand for power in each hour is assumed to be fixed, i.e., not sensitive to price

changes. Each transmission line has an associated thermal limit (not indicated in the figure).

Suppose that the GenCo is required each day to report a 24-hour supply offer to the day-

ahead energy market for its coal-fired power plant, and it does this by reporting strategically

in an attempt to secure for itself the highest possible net earnings. That is, for its coal-fired

plant the GenCo can report higher-than-true marginal costs of production or less-than-true

maximum operating capacity. On the other hand, suppose the GenCo’s daily 24-hour supply

of nuclear power is externally determined in accordance with safety regulations.

Given all supply offers for all generation plants and total LSE load for any given hour H

of the day-ahead energy market, the ISO solves a standard DC optimal power flow (DC OPF)

optimization problem that involves the minimization of (reported) generation production costs

subject to network constraints, (reported) generation operating capacity limits, and a balancing

condition requiring that the total supply of power just equal total load. The solution of this

problem determines for hour H the GenCo’s dispatch levels for nuclear power at bus 3 and coal-
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fired power at bus 4, as well as dispatch levels for all other generation plants and a Locational

Marginal Price (LMP) in $/MWh at each bus. Given congestion anywhere on the 5-bus grid

in a particular hour, the LMP solutions determined via DC OPF for this hour will “separate,”

meaning that the LMPs at two or more buses will deviate from each other. The price received

by the GenCo for its dispatched supply of nuclear power at bus 3 is the LMP at bus 3, and the

price received by the GenCo for its dispatched supply of coal-fired power at bus 4 is the LMP

at bus 4.

Clearly drops in the LMP value at either bus 3 or bus 4 result in lower net earnings for

the GenCo, all else equal. Moreover, lower LMP values over time result in lower net earnings

for the GenCo, all else equal. Finally, increases in the GenCo’s fuel input costs lower its net

earnings, all else equal. Hereafter the possibility that the GenCo receives lower net earnings

due to adverse price movements, either output or input, will be called the GenCo’s price risk .

The GenCo can attempt to manage its price risk by engaging in physical or financial bilateral

transactions1 with other market participants. For example, the GenCo could write a contract

C with an LSE j on day D specifying that the GenCo will inject q MWs of power at bus 3

and/or bus 4 during a specific hour H of day D+1 for a specific strike price p ($/MWh), and

the LSE j will in turn withdraw power q at its bus location during hour H of day D+1 and

pay to the GenCo the strike price p.

However, this bilateral contracting is complicated by the fact that injections and with-

drawals of power on the transmission grid are in fact charged in accordance with LMP. To

ensure the strike price p can be implemented in hour H of day D+1 under LMP, the bilateral

contract C needs to incorporate an appropriate contract-for-difference (CFD) clause ensuring

the effective price is p even if the LMP received by GenCo i or paid by LSE j differs from

p. Further, given the possibility of LMP separation across buses, “making whole” the strike

price p in hour H of day D+1 also requires additional contracts, such as Financial Transmis-

sion Rights (FTRs) associated with pairs of buses k and m. Roughly stated (ignoring network

1In U.S. ISO-managed energy regions such as (MISO, , p. 15), a bilateral transaction that involves the physical
transfer of energy through a transmission provider’s region is referred to as a physical bilateral transaction.
Bilateral transactions that only transfer financial responsibility within and across a transmission provider’s
region are referred to as financial bilateral transactions.
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losses), a 1-MW FTR from a bus k to a bus m in hour H of day D+1 is a financial contract that

entitles its holder to receive (or pay) compensation ($/h) in amount 1-MW × [LMPm−LMPk]

for hour H of day D+1.

An appropriate combination of an FTR contract and a CFD-extended version of the bilateral

contract C can ensure that the GenCo receives the strike price p for its injection of q MWs in

hour H of day D+1, thus reducing its price risk. However, this reduction in price risk needs

to be balanced against the cost of acquiring the supporting contracts.

In summary, for the scenario at hand, at any given time the GenCo’s asset portfolio will

include physical assets (power plants G3 and G4), a futures contract (cleared supply offer) for

sales in the day-ahead energy market, and various forms of bilateral contracts and FTRs.

3.5 Risk-Hedging Through Bilateral and FTR Contracts

Consider a GenCo i and an LSE j that are participants in an ISO-managed day-ahead

energy market with locational marginal pricing. GenCo i receives a price LMPi for each MW

of power it injects at its bus i, and LSE j pays a price LMPj for each MW of power that its

retail customers withdraw at bus location j, where these LMP values are determined by the

ISO through an appropriate OPF calculation.

Suppose GenCo i wishes to use bilateral contracts to manage its (output) price risk. In

particular, suppose GenCo i enters into a contract C with LSE j on day D specifying that

GenCo i will inject q MWs of power at bus i during a specific hour H of day D+1 for a specific

strike price p ($/MWh). In turn, the contract C obliges LSE j to purchase q MWs of power

at bus location j during hour H of day D+1 and to pay to GenCo i the strike price p for each

MW of this withdrawn power.

As noted in Section, the implementation of this bilateral contract is complicated by the fact

that power injected into or withdrawn from the transmission network is priced by means of

LMPs. Consider, first, the case in which there is no network congestion during the designated

hour H. In this case all bus LMPs for hour H collapse to a single value, say LMP∗. If LMP∗

differs from the contract strike price p, Genco i and LSE j will need to extend their original

bilateral contract C to a contract C∗ incorporating a CFD clause stipulating that either party



www.manaraa.com

50

will be compensated by the other for excessive or insufficient payment in relation to the intended

strike price p.

For example, suppose LMP∗ > p, implying that LSE j pays more than the strike price

p for the power its retail customers withdraw at bus j and GenCo i receives more than the

strike price p for the power it injects at bus i. The CFD clause should then require GenCo i to

compensate LSE j with an extra payment q·[LMP∗ - p], thus “making whole” LSE j by ensuring

the effective price paid for the contracted power amount q is the strike price p. Similarly, in

the reverse case p > LMP∗, the CFD clause should require LSE j to “make whole” GenCo i

with an extra payment q·[p - LMP∗].

Hence, in the absence of congestion, the extended contract C∗ provides a perfect hedge for

GenCo i and LSE j against price risk in the form of deviations of LMP∗ from p. If network

congestion arises in hour H, however, C∗ will not be enough to ensure a complete hedging

against this price risk. Congestion can lead to divergence between the LMPi at bus i received

by GenCo i and the LMPj at bus j paid by LSE j. In particular, the LMPi at bus i could

drop below p while at the same time the LMPj at bus j exceeds p, implying that both parties

to the contract are in need of “make whole” payments.

This gap in hedge coverage can be filled by an appropriate parallel purchase of FTRs in

the form of obligations, the only form of FTR to be considered below. An FTR in the form

of an obligation entitles its holder to compensation (or obliges its holder to pay) based on the

difference in LMP outcomes between two specified bus locations for some specified hour.2 For

example, suppose a market participant holds an FTR position of q MWs for a source bus i and

a sink bus j for a particular hour H. The holder is then entitled to receive a compensation of

πij = q · [LMPj − LMPi] ($/h) (3.4)

from the ISO if πij ≥ 0; otherwise the holder must pay the ISO the amount −πij . Since bus

LMPs collapse to a single value across the transmission network in the absence of congestion

(ignoring typically small network losses), FTR compensations and payments only take place in

2More precisely, if network losses are considered, these compensations or payment obligations are based on
the congestion components of LMPs rather than the LMP values per se. This complication is ignored in this
introductory presentation.
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congested conditions.

How might GenCo i and LSE j accomplish a complete hedge of their price risk through

a combined holding of an appropriate CFD-extended bilateral contract and an FTR holding?

Suppose GenCo i acquires an FTR position of q MWs from bus i to bus j on day D for hour

H of the day-ahead energy market on day D+1. GenCo i’s net receipts on day D+1 from its

energy injection and its FTR holding are then as follows:

q · LMPi + q · [LMPj − LMPi] = q · LMPj . (3.5)

Consequently, under the FTR, GenCo i’s sale price in hour H of day D+1 has been effectively

changed from LMPi to LMPj , the purchase price paid by LSEj at bus j in hour H of day

D+1. Suppose, in addition, that GenCo i and LSEj extend their bilateral contract C with the

following type of CFD clause applying only to bus j: GenCo i makes a payment to LSE j in

amount q · [LMPj − p] if LMPj > p or receives a payment from LSE j in amount q · [p−LMPj ]

if p > LMPj . This combination of contracts ensures that the price received by GenCo i and

paid by LSE j for the contracted power level q in hour H of day D+1 is precisely p.

3.6 FTR Acquisition Process

A Financial Transmission Rights contract has the following specifications for GenCo i lo-

cated at bus i:

• Source Bus i and Sink Bus j

• Max Bid Price: ρij $/MWh

• Max Bid Amount: FTRMax
ij MW

FTRs can be acquired by market participants in the following ways:

3.6.1 FTR Auction

The annual FTR auction is conducted by ISO to sell FTR quantities equivalent to a part of

the total available transmission capacity. Subsequent auctions are held every month in which
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FTR quantities equivalent to residual (after annual auction) transmission capacity are available

to be sold. FTRs held by market participants (acquired during annual auction) can be entered

into monthly auction as offers to sell. In PJM (2009) 50% of the total transmission capacity

is available to be sold in the annual FTR auction. About 95% of the remaining 50% of the

transmission capacity can then be sold in the subsequent monthly auctions. The auctions are

generally held in multiple rounds where the FTRs bought in previous rounds can be entered

as offers to sell in the current or subsequent rounds of auction.

3.6.2 FTR Secondary Market

Upon completion of the annual and monthly auctions, the market participants are allowed to

buy/sell FTRs without entering into the monthly auctions. However, FTRs are point-to-point

transmission contracts and because of the numerous combinations of pairs over which FTRs

can be written, the liquidity of FTR trading over any given pair of grid buses is generally

limited. To maintain the simultaneous feasibility of allocated FTRs, the ISOs impose following

restrictions on the trading of FTRs in the secondary markets:

• FTR quantity and/or date can be reconfigured in case of change in ownership of Bilateral

Contracts. However, such reconfiguration only entails transfer of rights and are approved

only after credit worthiness of market participants is evidenced. The FTR cannot be

reconfigured with respect to FTR receipt and withdrawal points.

• Any given FTR may be split into multiple FTRs, however, the receipt and withdrawal

points cannot be altered compared to the original FTR. Additionally, the aggregate of

the reconfigured FTRs must equal the original FTR in all respects.

• The dates specified in the reconfigured FTRs must not span less than 1 day.

3.6.3 Grand-fathered FTRs

ISOs allot a certain number of FTRs to be handed out for “free” to market participants

based on historical firm-transmission3 usage as well as for qualified transmission investments.

3Firm transmission is roughly defined as the actual transmission capacity minus the reservation capacity.
The amount of firm-transmission is calculated differently by various ISOs.
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The latter is generally thought to provide incentive for transmission investment. The FTRs

allotted under this scheme are allowed to be sold through FTR auction or the secondary market.

Unlike the FTR auction, allocation of FTRs is not based on market driven mechanism and can

be done in the following ways:

Direct Allocation: In this method the ISOs allocate FTRs free of cost to the market par-

ticipants. The rules for direct allocation of FTRs differ among various ISOs. The ISOs must

ensure that the issued FTRs always satisfy the SFT. The effect of FTR allocation to either the

generating companies or the load serving entities (LSEs) has a direct bearing on the level of

market efficiency (will be discussed later).

Auction Revenue Rights: Auction Revenue Rights (ARRs) are financial instruments that

entail their holders a share of proceeds from the annual FTR auction. ARRs, like the direct

allocation method, are allocated to market participants on the basis of historical firm trans-

mission usage. The firm historic usage of transmission system is determined differently by the

ISOs. ARRs are specified in the same way as the FTRs and are settled based on the clearing

prices from the annual FTR auction prices. ARRs can be of either obligation or option type.

ARR obligations, just like FTR obligations, may entail their holders to benefits or liabilities,

depending on the FTR auction outcome. In case of multi-round FTR auctions, the ARRs are

settled using the average of annual FTR auction prices calculated in the different rounds. The

ISOs must ensure the simultaneous feasibility of the allocated ARRs (just like FTRs).

The revenue from ARRs can be used by a market participant to buy any of the available

FTRs and not just the FTRs specified along the same path as the ARRs. ARRs are thus,

thought to be a better alternative to the direct allocation process.

3.7 Pricing of Transmission Congestion Derivatives and Partial Risk

Hedging

Siddiqui et al. (2003), using data from 2000 and 2001, show that the transmission congestion

constraints (TCCs) in New York provide an effective hedge against uncertain prices. However,

the prices paid for TCCs do no reflect congestion rents for large exposure hedges and over
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large distances. The authors present two possible reasons for the market inefficiency causing

customers to pay unreasonably high risk premiums. The first being low liquidity in TCC

markets and the second being the relaxing of the requirement that the possible number of

TCCs being equal to the actual energy flows.

Deng et al. (2005) present theoretical evidence for empirical findings that the clearing prices

of FTRs, resulting from centralized auctions, significantly and systematically differ from the

congestion revenue payoffs for holding those FTRs for the market participants. The authors

first describe the mathematical optimization problem used by ISOs to issue FTRs to market

participants.

maxqij
∑
i,j∈m

∑
j 6=i

fij · qij

s.t.qi =
∑
j 6=i

qij −
∑
k 6=i

qki∀i ∈ m

−L ≤ Gr ·Q ≤ L∀r ∈ R

0 ≤ qij ≤ qij∀i, j, andj 6= i (3.6)

where qij ,∀i, j denote the FTR quantities from node i to j, and Q ≡ (q1, q2, ...., qm)T denote the

energy injection/withdrawal vector at the respective buses, imputed from all awarded FTRs.

Let C ≡ (c1, c2, ...., cm)T denote the vector of expected LMPs at the m nodes, then fij ≡ cj−ci.

L is the vector of transmission line capacity limits and Gr is the power transfer distribution

factor (PTDF) matrix for each contingency r ∈ R. The aggregate quantity of FTR awarded

from node i to j is bounded above by qij . Thus the objective is to maximize the auction value

subject to nodal energy balance, transmission capacity and maximum possible FTR award

constraints, respectively.

The authors show that even in presence of perfect foresight of payoff from holding FTRs

(which entails bidding for FTRs at price equal to the expected present value of future congestion

revenue payoff for a rational risk neutral participant), the clearing prices depend significantly

on the amount of bid quantities. In particular, the limits on the FTRs quantities available to

be purchased by market participants result in market clearing prices significantly different from

bid prices. The authors use assumption of risk neutral participants, bidding FTR quantities at

price equal to present value of expected future payoff, to construct a “virtual” energy auction
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from the original annual FTR auction conducted by the ISO. Using simulations for a five-node

grid, the authors run economic dispatch problem to obtain values for, Pi-, the ex-post nodal

LMPs and Q - the vector of power dispatch level each generating unit. The quantity bid in

the “virtual” energy auction (FTR auction) is then bounded above and below by αQ and −αQ

respectively, and the bid price equals present value of expected future payoff. When α = 1, the

bid quantity in virtual energy auction equals the generator quantity amounts from economic

dispatch problem and the payoff from holding FTRs matches exactly the market clearing prices.

Hence, the generators are completely hedged against congestion risk. However, when α 6= 1, the

payoffs from holding FTRs significantly differ from market clearing prices and the generators

are exposed to some price risk.

The result although trivial, shows a glaring problem with ISO’s conduct of FTR auctions.

It is a common practice by ISO’s to limit the number of FTRs available in annual auctions to

about 50% (α = .5) of the total transmission capacity. Hence, the generators cannot completely

hedge against congestion risk and are exposed to significant financial risks because of the market

design itself. About 95% of remaining transmission capacity is available to be purchased during

subsequent monthly auctions. Whether the monthly auctions eliminate completely or partially

the financial risks from congestion remains to be further analyzed.

Locational vs Zonal Pricing : In Benjamin (2010), Benjamin examines the risk-hedging

properties of FTRs in markets where load is settled on a zonal level (such as PJM), rather than

nodal level (MISO,NYISO,ISO-NE). In zonal pricing paradigm, where market participants

pay/receive load weighted prices in a defined zone, the author shows, using a three-bus grid,

that some market participants (depending on the location in the grid) may be over/under

hedged against the price risks due to congestion.

3.8 FTRs and Market Power

Strategic behavior of FTR holders has been analyzed by various researchers. Joskow and

Tirole (2000) study the effect of FTRs on market power of generators (GenCos). They con-

clude that for a specific configuration of GenCos (expensive monopolist at South node and

price taking competitive GenCos at North node in a 2-node system) holding of FTRs by the
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monopolist increases its market power. They also analyze different configurations of three-node

networks and reach the same conclusion of market inefficiency caused by holding of FTRs. The

claim was further established by Oren (1997) who shows that even in the absence of market

concentration, expectation of congestion and passive transmission rights can lead to implicit

collusion between generators and hence, market inefficiency. Stoft (1999), re-investigates Oren

(1997) using Cournot competition based analysis to show that financial transmission rights

such as TCCs can curb market power. Stoft points out that Oren’s second example , which

is intended to be a Cournot model, is mistakenly constructed as a Bertrand model and hence,

is mis-analyzed. However, Stoft’s analysis is based on long-term profits of strategic generators

and not on the actual effect on prices (above marginal cost) that defines market power. Hogan

Hogan (2000), using a slightly modified version of the grid used by Joskow et al, shows that

use of FTRs does in fact increase social welfare. Sun (2005) shows that in the presence of

stochastic parameter shocks, and absence of market power, acquisition of FTRs by risk averse

market participants increases the social welfare compared with the case where there is no FTR

available.

Unlike Physical Transmission Rights, FTRs cannot be used to withold transmission ca-

pacity. However, by strategic bidding in the day-ahead market, an FTR owner may be able

to increase congestion level in the transmission grid to earn higher payoff. The situation is

presented by Bushnell (1999) and shows that although, this kind of strategic activity may not

be indicative of market power abuse, but can deem lower efficiency levels compared to no FTR

case.

3.8.1 Impacts of Allocation of FTRs on Market Efficiency

Allocation of FTRs to the market participants has a direct bearing on market efficiency.

Joskow and Tirole (2000) conclude that when the FTRs are allocated to a market participant

that is neither a generator nor a load, the monopoly generator will want to acquire all the FTRs.

When the FTRs are allocated to a market participant with no market power, the monopoly

generator will buy no FTRs and when the FTRs are auctioned to the highest bidders, the

generators will buy a random number of FTRs.



www.manaraa.com

57

As shown by various researchers, FTRs provide incentives for GenCos to act strategically

in order to increase their net-earnings. The FTRs can thus counter-act to the benefits of price

risk hedging. In order to curb the potential of market power induced by FTRs, Bautista et al.

(2004) proposed that the FTRs should be issued from- or to- a common point, determined by

a measure called relative cross-price sensitivity. However, by effectively reducing the number

of FTRs, it is not clear how the proposed approach will interfere with the price-risk hedging

function of FTRs.

Benjamin (2010) examines the hedging and re-distributional properties of FTRs. Specifi-

cally, using two-bus and three-bus grids, the author shows how different allocation methods of

FTRs have an impact on the distribution of congestion rent and the related implications for

retail rates. It is shown that if the FTRs are allocated to LSEs (who are required to credit

FTR revenues against electricity procurement costs), then in theory the retail customers can

reap benefits of lower energy prices.

3.9 FTRs and Transmission Investment

The efficient functioning of electricity markets necessitates sufficient transmission capacity.

Investment in transmission ensures that power consumed is generated using cheaper and/or

alternative4 sources of energy. Congestion on a grid, as indicated by separation of locational

prices (although prices can differ for reasons other that congestion due to insufficient trans-

mission capacity) leads to generation of power out-of-merit order and hence, reduced social

surplus. The short-run congestion cost to society can be calculated as the difference in location

prices times the energy transferred between two buses.

Investments in transmission capacities can be undertaken by centrally planned government

regulations like in UK and Norwak (see Woolf and Hunt) or through private enterprize. The lat-

ter approach requires provisioning of sufficient financial incentives facilitated by market mech-

anisms. A mixture of regulatory mechanism and merchant incentives is used for transmission

investment in US and Australia.

The issuance of long-term or incremental FTRs (IFTRs) is considered to provide market

4Such as wind energy produced in the Dakotas.
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based incentives for transmission investment, since the receivers of IFTRs receive payoffs that

are determined using market based energy auctions. Under this design, additional FTRs are

issued to market participants that invest in new transmission capacity. Currently, IFTRs

are issued by CAISO, MISO and NYISO, while PJM and ISO-NE offer incremental ARRs.

Bushnell and Stoft prove that the net value of IFTRs allocated under feasibility rules of existing

transmission capacity, will not exceed the increase in social welfare. Also, if a transmission

expansion causes reduction in social welfare, then the market participant holds IFTRs with

negative value. Using a two-bus grid where a new transmission line is added, they show the

negative impact on the payoff of existing FTRs, and propose that the investor be accountable

for the negative externalities due to its transmission investment.

However, there are some difficulties in using this approach to incentivize transmission in-

vestment. The first problem is that the issued set of IFTRs, along with a base set of FTRs,

must be simultaneously feasible over the existing transmission network. The base FTRs are

issued periodically, i.e., yearly and monthly, are of shorter maturity periods. However, the

IFTRs can have much longer maturity periods. Secondly, additional transmission investment

over the years might mitigate LMP differentials over some paths of IFTRs and thus dilute the

payoffs from holding those IFTRs. The investors must therefore, be aware and willing to take

such risks.

As pointed out by Joskow and Tirole (2003), exerting of market power by some market

participants can provide inaccurate estimation of benefits from transmission investment. Using

a two-bus grid, they show that under a certain market setup, exerting of market power by a

GenCo leads to over-reporting of congestion cost and hence, over-estimation of the benefits to

be had from transmisson investment. For another market setup, they also present the alternate

example of under-estimation for benefits from transmission investment.
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CHAPTER 4. Study of Joint Bidding Strategies in Physical and Financial

Electric Power Markets Using Analytical and Agent-Based Models

4.1 Introduction

Financial Transmission Rights (FTR) are in use in most of the US (restructured) wholesale

electric power markets. FTRs were designed to provide market participants a financial tool

that could be used to hedge against price volatility, due to congestion risks, in the Day-Ahead

energy market (DAM) settlements. Fig. 4.1 shows a rough time-line of the operation of FTR

auction and the day-ahead markets operated by the grid operator.

GenCos submit 
offers to supply 
energy in real-
time market the 
following day 

GenCos acquire 
FTRs to hedge 
against future 

price risk 

FTR – 
Auction:  

Day – Ahead 
Energy Market 

Auction: 

Submit 
offers to 
supply 
power 

Decide 
optimal 
supply 
quantities 
and LMPs 

Submit bids/
offers to 
buy/sell 
FTRs 

Allocate 
FTRs 
optimally 
to all 
bidders 

Energy 
market 

settlement  
+ 

Payoff from 
FTRs portfolio 

based on 
energy 
market 

settlements 

Figure 4.1 Rough time-line of restructured wholesale power markets

The payoff for holding an FTR from node k to m depends on the locational marginal price

(LMP) differential between the two nodes in the said direction. The prices that energy traders

are willing to pay to acquire FTR portfolios in the ISO FTR auctions will thus presumably
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reflect their expectations with regard to payoffs in the DAM. On the other hand, after acquiring

FTR portfolios, market participants can report strategic supply offers to the ISO in the day-

ahead energy markets in an attempt to influence the LMP outcomes, upon which their FTR

payments depend. The two problems have been studied by various researchers1, although in

isolation i.e., in a partial-equilibrium like setup. Bidding in the FTR auction market is studied

by taking as given the expected outcomes in the DA energy market, while the supply offer

strategies in the DA energy market are modeled by assuming that a portfolio of FTRs has

already been acquired. In essence, a feedback mechanism linking the bidding strategies in

the two markets is yet to be studied extensively. We use a combination of analytical, and

computational agent-based models to study this problem.

The original contribution of this paper is to develop a feedback mechanism between the

two markets and to demonstrate the existence (or not) of pure-strategy Nash equilibria in

the “bidding” strategies of market participants in the FTR auction, with respect to their

expectations of energy market payoffs, as well as the expectations of their rivals’ “bidding”

strategies in the two markets. A theoretical framework is first developed to establish the

dynamics between the two markets and then, a three-bus grid is used to analytically study the

dependence of “bidding” strategies in the two markets. A key finding of this research is that

the supply-offer “bidding” behavior of market participants in the energy market is affected by

the portfolios of FTRs they hold. In particular, we find the existence of pure-strategy Nash

equilibria in supply offer “bidding” in the energy markets for only certain portfolios of FTRs.

We then use an agent-based computational model to study the dependence of bidding

strategies of participants in the two markets. The market participants are modeled as adaptive

learners that interact with other participants repeatedly in both the markets. We show that

the market participants are able to systematically coordinate their bidding strategies in the

two markets. In reporting the jointly-optimal bidding strategies the market participants are

also able to identify any spatial advantages they might have. The organization of this chapter

is as follows: In section 2, theoretical framework is developed to study the dynamics between

1The effects of FTRs on market power exercised by GenCos in DA energy market and overall market efficiency
have been studied in Joskow and Tirole (2000), Oren (1997), Stoft (1999), Hogan (2000), Sun (2005)
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the two markets. In section 4, a three-bus grid is used to analytically study the dependence

of bidding strategies in the two markets. In section 5, we present an agent-based model to

study the joint-bidding strategies of market participants in the two markets. Section 6 presents

concluding remarks.

4.2 Dependence of GenCo Bidding Strategy in Day Ahead Market and

FTR Auction

In this section an analytical framework is developed to examine the feedback mechanism

that link the bidding strategies in two markets. In particular, the bid strategies of the GenCos

in the FTR auction are conditioned on their expectations of DAM payoffs as well as on their

expectations of rivals’ strategies in the two markets. The dynamic choice problem for the

GenCos is modeled analytically as a three stage process. In stage 1, day D = 0, the GenCos

submit bids to acquire FTRs from the ISO’s FTR auction. In stage 2, day D > 0, the GenCos

report supply offers to the ISO for the DAM for dispatch for power production on day D+1.

On day D+1, the GenCos receive (or are liable to pay) compensation for the FTRs acquired

on day D = 0 based on the LMP outcomes for day D+1. The GenCo bidding strategies for

both markets are modeled as two-level optimization problems as presented in Fig. 4.

• Stage 2: In the first level of the two-level problem, the ISO solves an Optimal Power Flow

(OPF) problem, while taking as given the supply offers by different GenCos. In the second

level, the GenCos optimize supply function parameters bi for i = 1, ...I to maximize profits

from selling power as well as payoffs from holding a portfolio of FTRs Fi acquired on day

D-1, while taking as given the dispatch quantities pGi and nodal prices LMPki determined

in the first level by the ISO. Here, Ri is the vector of LMP differentials for portfolio of

FTRs held by GenCos. It is assumed that the ISO’s OPF solution process is transparent

to each player. The supply function equilibrium problem yields best response functions

bri for each GenCo. In case, a pure strategy Nash equilibrium (or a set of equilibria), the

optimal strategies can be obtained by simultaneously solving the best response functions.
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• Stage 1: In the first level of the two-level problem, the ISO maximizes FTR auction

revenue subject to Simultaneous Feasibility Test (SFT), which ensures that the allotted

FTRs are feasible given then transmission constraints and contingency events. The ISO

optimization problem (if solution exists) yields FTR clearing prices FCPi and the allotted

FTRs Fi (a pair of vectors for each GenCo i). In the second level, the GenCos bid

strategically a pair of vectors (F bi , ρi) that represent the maximum amounts of desired

FTRs and the maximum willingness to pay for each FTR, respectively, to maximize the

utility from owning FTRs. The value function derived by solving day D problem first is

assumed to be known to each GenCo.

4.2.1 Model Basics

Table 4.1 Admissible Exogenous Variables And Functional Forms

Variable Description Admissibility Restrictions

K Total number of transmission grid buses K > 0
N Total number of physically distinct network branches N > 0
J Total number of LSEs J > 0
I Total number of GenCos I > 0
Jk Set of LSEs located at bus k Card(∪K

k=1 Jk) = J
Ik Set of GenCos located at bus k Card(∪K

k=1 Ik) = I
km Branch connecting buses k and m (if one exists) k 6= m
BR Set of all physically distinct branches km, k < m BR 6= ∅
xkm Reactance (ohm) for branch km xkm = xmk > 0, km ∈ BR
PU

km Thermal limit (MW) for real power flow on km PU
km > 0, km ∈ BR

cj ,dj Demand coefficients ($/MW,$/MW2) for LSEj cj ,dj > 0
CapL

i Lower real power operating capacity limit (MW) for GenCoi CapL
i ≥ 0

CapU
i Upper real power operating capacity limit (MW) for GenCoi CapU

i ≥ 0
a0
i ,b0

i True cost coefficients ($/MW,$/MW2) for GenCoi b0
i > 0

MCi(p) MCi(p) = a0
i +2b0

i p = GenCois true MC function for real power p MCi(CapL
i ) > 0

FCi,base
km Base case FTR on path km held by GenCo i FCi,base

km = 0

Table 4.2 Endogenous Variables

Variable Description

bi Cost coefficient ($/MW2) reported by GenCoi i=1,...,I
pGi Real-power generation (MW) supplied by GenCoi i=1,...,I
Pkm Real power (MW) flowing in branch km ∈ BR
LMPk Locational marginal price ($/MW) at bus k=1,...,K
FCPkm FTR clearing price for branch km ∈ BR
Fi

km Fkm (MW) cleared in ISO FTR-auction for branch km to GenCoi

Fi FTR portfolio cleared in ISO FTR-auction to GenCoi for ∀km ∈ BR

Fib
km Fkm (MW) bid by GenCoi - Max amount of Fkm GenCo willing to buy

Fb
i Vector of Fkm ∀km ∈ BR bid (to buy) by GenCoi
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We use a linear inverse demand function for electricity demand given by:

Dj(pLj) = cj − 2dj · pLj j =1,2,...J (4.1)

where pLj is the amount of load demanded by a Load Serving Entitiy (LSE) j, while cj and dj

are positive demand function coefficients. Each GenCo has a quadratic cost function given by:

Ci(pGi) = a0i · pGi + b0i · p2Gi i = 1,2,...I (4.2)

where a0i and b0i are non-negative true cost function coefficients. Thus, the supply offer

(marginal cost function) submitted by the GenCos to the ISO takes a linear form given by:

MCi(pGi) = ai + 2bi · pGi i = 1,2,...I (4.3)

where ai and bi represent reported marginal cost function coefficients and hence, the marginal

cost function reported by a GenCo to the ISO may differ from the true marginal cost. Next

we describe the DC-Optimal Power Flow (DC-OPF) solved by ISO to determine the dispatch

schedule of power generators.

4.2.2 ISO Day-Ahead Market Optimal Power Flow Problem

A commonly used representation for a DC-OPF problem is to minimize total net costs

corresponding to (TNC) subject to various transmission constraints. As explained at length in

Sun and Tesfation (2007) the DC-OPF problem formulation is as follows, where all endogenous

and exogenous variables are defined as in Tables ( 4.2) and ( ??), respectively:

min
pGi,pLj ,δk

J∑
j=1

(cj · pLj − dj · p2Lj)−
I∑
i=1

(ai · pGi + bi · p2Gi) + π

[ ∑
km∈BR

[δk − δm]2

]
(4.4)

subject to:∑
i∈Ik

pGi −
∑
i∈Jk

pLj −
∑

km∈BR
Pkm = 0; ∀ nodes k,m = 1, ...,K (4.5)

Pkm = Bkm[δk − δm] (4.6)

|Pkm| ≤ PUkm (4.7)

CapLi ≤ pGi ≤ CapUi (4.8)

δ1 = 0 (4.9)
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where, (5) represents the nodal real power balance constraint. Real power thermal constraint

for each branch km ∈ BR are represented in (7), constraints (8) are the real power operating

capacity constraints for each GenCo i = 1, ...., I.

The dispatch schedule (if a solution exists for the optimization problem) for each GenCo

is determined as the primal variable of the optimization problem. Specifically, the LMPs are

determined as functions of GenCo reported cost function parameters, apart from the exogenous

variables that define transmission grid constraints.

pGi(a,b) = ϕGi(ai,a−i, bi,b−i) ∀ GenCos i = 1, ..., I (4.10)

The shadow prices (dual variables of OPF solution) associated with these constraints are the

LMPs for the corresponding nodes. Just like the dispatch quantities, the LMPs are determined

as functions of the GenCo reported cost function parameters:

LMPk(a,b) = φk(ai,a−i, bi,b−i) ∀ buses k = 1, ...,K (4.11)

4.2.3 GenCo Day-Ahead Market Supply Choice Problem

Now we briefly describe a GenCo’s decision making process. Upon observing ISO’s OPF

solution, the GenCos optimize the supply function slope to maximize profits, which includes

the payoff from holding the portfolio of FTRs acquired earlier.

max
bi

[[
LMPk(i)(a,b) ∗ pGi(a,b)− Ci (pGi(a,b))

]
+
∑

km F i∗
km ∗Rkm(a,b)

]
(4.12)

subject to:

LMPk(i)(a,b) = φk(i)(ai,a−i, bi,b−i) (4.13)

pGi(a,b) = ϕGi(ai,a−i, bi,b−i) (4.14)

Rkm(a,b) = LMPm(a,b)− LMPk(a,b) (4.15)

for all GenCos i = 1.....I and all nodes k,m = 1.....K and k 6= m. The functions LMPk(i) =

φk(i)(a1, ...a2; b1, .., bI) and pGi = ϕGi(a1, ...a2; b1, ..., bI) result from ISO’s OPF solution as

described above. The vector representing portfolio of FTRs held by a GenCo i is F ∗i = [F i∗km],
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which results from FTR-auction optimization problem run by ISO on day D−1 and is taken as

given. Rkm represents the compensation (liability) from holding an Fkm. The result of GenCo

optimization problem is a set of optimal response functions for GenCo i:

ari = ai(a−i,b−i, F
∗
i ) (4.16)

bri = bi(a−i,b−i, F
∗
i ) (4.17)

Now, assuming that pure strategy Nash equilibrium (or a set of equilibria) exists, so that for

each GenCo we can derive optimal strategy pair (a∗i , b
∗
i ), the maximized objective function

(value function) can then be represented as,

V∗i (a
∗,b∗, F ∗i ) ≡ V∗i (pGi(a

∗,b∗), LMPk(i)(a
∗,b∗), F ∗i ) (4.18)

4.2.4 ISO FTR Auction Formulation

FTRs are acquired by market participants through ISO’s FTR auctions - annual and

monthly - and through a secondary market. In this section we describe the optimization

problem ISO solves in order to decide how to issue FTRs. An FTR bid by a market participant

includes the following parameters: source (point of injection)2 and sink (point of withdrawal)

nodes k,m = 1, 2, .....K and k 6= m; MW amount representing maximum number of an FTR

a bidder is willing to purchase3 – F bkm; and a dollar value representing maximum willingness

to pay for ONE MW of the desired FTR – ρkm ($/MW). For all nodes k,m = 1, 2, ...,K and

k 6= m we define the set of available FTRs as Θ(K). Without loss of generality, we assume that

only GenCos purchase FTRs and submit bids, (F bi , ρi), where F bi represents column vector of

maximum amounts of FTRs (for some ordered pairs {k,m}|Fkm ∈ Θ(K)) a GenCo i is willing

to purchase and ρi represents the column vector of bid prices for the corresponding FTRs.

Revenue Adequacy and Simultaneous Feasibility Test (SFT): A central issue in the provi-

sioning of FTRs by an ISO is revenue adequacy, which means that the congestion rent collection

(in day-ahead market) must be greater than or equal to the total FTR target payment. Addi-

tionally, the set of issued FTRs must satisfy simultaneous feasibility test, which can be stated

2Injection and withdrawal do not imply physical trade of electricity.
3ONE unit of Fkm held by a market participant entitles it to compensation (liability) owing to ONE MW of

power transaction over the path k → m. Also, there need not be a direct physical connection between the two
nodes.
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as following: the physical equivalent, in terms of nodal injections and withdrawals, of each

possible combination of individual FTRs must result in feasible power flow conditions for each

possible topological (n-1 contingency) scenarios of the network. As demonstrated in Sarkar

and Khaparde (2008) and Hogan (1992a), revenue adequacy is guaranteed if the issued set of

FTRs satisfy SFT. Each time there is a change in the configuration of FTRs, the SFT must be

run to ensure that the transmission system can support the set of issued FTRs.

The objective of the auction for the ISO is to award the FTRs to those who value them

the most. The auction value is maximized while respecting the transmission constraints on the

system, which is ensured by running the SFT. The ISO FTR auction is formulated here as a

linear programming problem, so that all constraints are linearized.

max
Fi

I∑
i=1

ρTi · Fi (4.19)

subject to:
I∑
i=1

β · (Fi + F basei ) ≤ PU (4.20)

Fi ≤ F bi i=1,2,...I (4.21)

Here Fi = Mi · F , where F is column vector of all possible FTRs, i.e. Θ(K). Mi is a diagonal

matrix (for GenCo i) mapping the FTRs in F to the decision vector Fi.

Mi = diag
[
I(F ibkm)

]
(4.22)

I(F ibkm) =

 1, if F ibkm > 0

0, otherwise

F basei represents the exogenously given column vector of base FTRs, F i,basekm already held by

a GenCo i. As was mentioned in section 2 above, FTRs can be acquired in the auction held

annually or in the subsequent monthly auctions. In case of annual FTR auction F i,basekm = 0 for

all km ∈ BR and for all i, whereas for the monthly auctions the base FTRs maybe be positive

for some paths km ∈ BR. Again, we have assumed that the FTR auction in the problem is the

annual auction and hence, all the base FTRs are set to zero. β represents matrix of PTDF4 βtkm
4Power Transmission Distribution Factor describes the amount of power transmitted through branch t due

to FTR from node k to m. In other words βt
km describes the equivalent amount of power transmitted through

branch t due to 1 MW injection of power by GenCo i at bus k and to be withdrawn at bus m.
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for all branches t ≡ km5 ∈ BR due to FTRs Fkm and PU is the column vector of transmission

line (heat) limits. Constraint () represents conditions ensuring SFT and constraints (21) restrict

the amount of FTRs issued to be less than the maximum amount willing to be purchased by a

GenCo. The Lagrangian for the optimization problem is setup as follows

Λ =
I∑
i=1

ρTi · Fi + µT

(
PU −

I∑
i=1

β · (Fi + F basei )

)
+ αT1 (F b1 − F1) + ...+ αTI (F bI − FI) (4.23)

The primal problem results in (if a solution exists for the optimization problem) optimal FTR

allocations F ∗i for all GenCos i = 1, ..., I. As mentioned earlier, not all FTR bids by GenCos

are cleared to the maximum desired levels or even not at all in some cases. The FTRs represent

virtual physical rights over the transmission capacity and hence, the supply limit of the FTRs

is determined by the available transmission capacity. In case some transmission line thermal

limits are reached because of the implied branch flows from allocated FTRs, the Lagrangian

multipliers for such lines are non-negative. The Lagrangian multipliers of constrained transmis-

sion lines are then used to derive the FTR clearing prices (FCP). FCPs for cleared FTRs are

the same for a given branch, irrespective of which GenCo is allocated the right. The following

formula is used to price the cleared FTRs.

FCPkm =
∂Λ∗

∂F i,basekm

=
∑
t∈BR

µt · βtkm (4.24)

where, F i,basekm is the base case FTR for some path km such that, FTR F i∗km ≤ F ibkm for some

GenCos i = 1, ...I, i.e. only marginal FTRs (F i∗km not cleared up to the maximum desired

amount F ibkm). The FTR clearing price for an FTR on branch km can be interpreted as the

system cost of providing an extra unit of Fkm, which can be derived by valuing the effect

of additional MW injection at node k (withdrawal at node m) on all capacity constrained

transmission lines. The following properties for FCPs always hold true:

P1. The FCP of a marginal FTR is always equal to the bid price.

P2. The FCP of an FTR cleared fully is less than the bid price.

5The inconvenient notation is regretted. It must be noted that both t and km refer to branches, while km
is also used to reference FTRs. The FTRs are essentially written over branches, but the physical equivalent of
branch power flows implied by an FTRkm are imputed using the PTDFs. Hence, the distinction must be made
between the superscript (branch) and subscript (FTR) when referencing PTDFs.
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P3. The FCP of non-marginal FTR can be expressed as a function of FCPs of the marginal

FTRs.

The proofs for these properties can be shown by simple algebraic rearrangement of the first

order necessary conditions of the optimization problem.

4.2.5 GenCo FTR Choice Problem

The result from the GenCo maximization problem is then considered as a value function,

V∗i (a
∗,b∗, F ∗i ), for the utility maximization problem of bidding for the optimal portfolio of

FTRs.

max
F b
i ,ρi

[
−F ∗i (F bi , ρi,F

b
−i, ρ−i

T ) · FCPi(F bi , ρi,Fb
−i, ρ−i

T ) + V∗i (a
∗,b∗, F ∗i )

]
(4.25)

where all the variables are as explained earlier. Just like the DA market optimal supply choice

problem, it is assumed that the ISO’s FTR allocation problem is transparent to the GenCos.

The GenCos then submit bids to purchase FTRs in order to maximize their net revenues from

holding FTRs, dependant on expected choice of their, as well as that of rivals’, supply offers

in the DA energy market. It is assumed that the GenCos have all information regarding their

own supply offer6 and the rivals’ optimal responses to their strategies.

4.3 Three Bus Grid: Analytical Model

In section 3 above we presented a theoretical framework within which to study the bidding

behavior of GenCos in the two inter-related markets. Here we use a simplified three-bus grid

(fig. A.1) example to establish an information feedback mechanism between the two markets.

4.3.1 Day D Energy Market

We first solve for day D energy market economic dispatch solutions (solved using ISO’s

OPF problem), and the optimal GenCo strategies for submitting supply offers. By the process

6In essence we assume that GenCos have all information about the expected demand and other conditions
affecting supply offer choices in the DA market.
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Figure 4.3 Three Node Grid

of backward induction, we then use the needed results to solve day the D − 1 FTR-auction

problem. In appendix B we solve the dispatch quantities for GenCos submitting supply offers

into the DA energy market auctions for a three-bus grid by solving for optimal branch flows

that complied with the given transmission constraints. In this section we derive the dispatch

quantities by solving the ISO’s Optimal Power Flow problem by maximizing net social benefit

in the presence of transmission and other constraints. It is assumed that the load demand is

high enough so that transmission line 1→ 3 is congested. Also, it is assumed that there are no

generation constraints and that the cost functions are same for the GenCos. The ISO’s OPF

problem7 is formulated as follows:

max
pG1,pG2,pL

(
c · pL − d · p2L

)
−
∑
i=1,2

(
a0i · pGi + bi · p2Gi

)
subject to.

pG1 + pG2 = pL

β1 · pG1 + β2 · pG2 = PU13 (4.26)

where β1 ≡ β113, β2 ≡ β223 are the PTDFs for injection of 1MW power by GenCos 1 and 2 on

line 1→ 3 respectively. The Lagrangian formulation for the OPF problem is the following.

H =
(
c · pL − d · p2L

)
−
∑

i=1,2

(
a0i · pGi + bi · p2Gi

)
+ λ(pG1 + pG2 − pL) + µ(PU

13 − β1 · pG1 − β2 · pG2) (4.27)

7The following reduced form OPF problem is as detailed in Liu et al. (2009). A similar formulation is also
used by Liu and Wu (2007).
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The first order necessary conditions for the OPF problem are the following.

pG1 : −(a1 + 2b1 · pG1) + λ− µ · β1 = 0 (4.28)

pG2 : −(a2 + 2b2 · pG2) + λ− µ · β2 = 0 (4.29)

pL : c− 2d · pL − λ = 0 (4.30)

λ : pG1 + pG2 − pL = 0 (4.31)

µ : PU13 − β1 · pG1 − β2 · pG2 = 0 (4.32)

Solving the OPF yields the following dispatch quantities for the two GenCos,

pG1 =
(c− a01)β22 − (c− a02)β1β2 + 2d(β1 − β2)PU13 + 2b2β1P

U
13

2d(β21 + β22 − 2β1β2) + 2b1β22 + 2b2β21

pG2 =
(c− a02)β21 − (c− a01)β1β2 + 2d(β2 − β1)PU13 + 2b1β2P

U
13

2d(β21 + β22 − 2β1β2) + 2b1β22 + 2b2β21
(4.33)

Using the envelope theorem8, the following expressions for LMPs can be derived,

LMP1 = λ∗ − µ∗ · β1 (4.34)

LMP2 = λ∗ − µ∗ · β2 (4.35)

LMP3 = λ∗ (4.36)

Given the dispatch levels and LMPs, the GenCos move simultaneously to choose supply func-

tions to maximize profits from energy production as well as the payoff from FTR portfolio

already acquired. For the ease of analysis, we assume that each GenCo is purely hedging its

production revenues against congestion risks and hence, bids an FTR portfolio accordingly.

In the three-node grid we have used in this paper, the power is injected by GenCos at their

respective buses and withdrawn at the load bus. Hence, GenCos 1 and 2 hold FTRs F 1∗
13 and

F 2∗
23 respectively. Using first-order conditions of GenCos’ profit functions w.r.t the decision

8We can introduce an exogenously given load demand variable ξk = 0 for each of the nodes and assume the
regularity conditions hold to apply the implicit function theorem to derive these results.
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variable bi, we can derive the optimal response functions for each GenCo,

br1 = b01 +
d·(β2

2+β
2
1−2β1β2)
β2
2

+ b2
β2
1

β2
2

− 2F 1∗
13 ·(2b22β4

1+b2·(4β4
1d−6β3

1β2d+2β2
1β

2
2d+b01β

2
1β

2
2))

β4
2(c−a01)+β1β3

2(a02−c)−2PU
13(β3

2d−b2β1β2
2−β1β2

2d)+2F 1∗
13 (b2β2

1β
2
2+β2

1β
2
2d−β1β3

2d)

+
2F 1∗

13 ·(2β4
1d

2−6β3
1β2d

2+6β2
1β

2
2d

2+b01β
2
1β

2
2d−2β1β

3
2d

2−b01β1β3
2d)

β4
2(c−a01)+β1β3

2(a02−c)−2PU
13(β3

2d−b2β1β2
2−β1β2

2d)+2F 1∗
13 (b2β2

1β
2
2+β2

1β
2
2d−β1β3

2d)

(4.37)

br2 = b02 +
d·(β2

2+β
2
1−2β1β2)
β2
1

+ b1
β2
2

β2
1

− 2F 2∗
23 ·(2b21β4

2+b1·(4β4
2d−6β3

2β1d+2β2
1β

2
2d+b02β

2
2β

2
1))

β4
1(c−a02)+β2β3

1(a01−c)−2PU
13(β3

1d−b1β2β2
1−β2β2

1d)+2F 2∗
23 (b1β2

2β
2
1+β2

2β
2
1d−β2β3

1d)

+
2F 2∗

23 ·(2β4
2d

2−6β3
2β1d

2+6β2
2β

2
1d

2+b02β
2
2β

2
1d−2β2β

3
1d

2−b02β2β3
1d)

β4
1(c−a02)+β2β3

1(a01−c)−2PU
13(β3

1d−b1β2β2
1−β2β2

1d)+2F 2∗
23 (b1β2

2β
2
1+β2

2β
2
1d−β2β3

1d)

(4.38)

where, br1 = b1(b2, F
1∗
13 ) is the response function of GenCo 1, w.r.t the reported supply function

coefficient of GenCo 2. At this point it is worth investigating whether pure strategy Nash

equilibrium (or a set of equilibria) exists in the supply offer “bidding” strategy for the two

GenCos.

Effects of FTR Portfolios on Energy Supply Offers

To investigate whether Nash equilibrium (or a set of equilibria) exists in the supply offer

“bidding” strategy for the two GenCos, we assume the numerical values for the various demand

and cost function parameters as in Liu and Wu (2007). The system inverse demand function

is given as,

Dj(pLj) = 50− 0.02 · pLj (4.39)

The generators’ quadratic cost function is given as

Ci(pGi) = 2 · pGi + .015 · p2Gi (4.40)

Since FTRs are already acquired, we can also treat those as constants and assume numerical

values based on the following feasibility constraint.

β1 · F 1
13 + β2 · F 2

23 ≤ PU13 (4.41)
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where β1 = 0.5, β2 = 0.25 and PU13 = 300 MW. By assuming that the FTRs acquired by the

two GenCos are in certain ratios (while respecting the above constraint as an equality), we

plot the resulting reaction functions to check for the existence of equilibria. Fig. 4.4 presents

the cases for non-existence of pure-strategy Nash supply-function equilibria, while for the FTR

portfolios shown in Fig. 4.5, pure-strategy Nash supply-function equilibria exist.
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Figure 4.4 No Pure Strategy Nash-Supply Function Equilibria

The results for the case of no FTRs held by either firm are similar to the one derived by Liu

and Wu (2007), i.e., no pure strategy supply-function equilibria exist. However, it is interesting

to note that if the FTRs held by the two firms are in certain specific ratios, then there seems to

exist unique equilibria in the strategy space of the supply offer slope coefficient. This reaffirms

our conjecture that that the GenCo “bidding” strategy in the DA energy market must be

affected by portfolio of FTRs already acquired. It is also interesting to note that GenCo 1’s

optimal response is to submit negative slope coefficients, i.e. br1 < 0, for certain values of b2.

In effect, GenCo 1 submits a downward sloping supply offer9 in response to GenCo 2’s supply

offer (not necessarily optimal b2’s). Thus, it appears that GenCo 1 is willing to accept losses

from the physical energy sales by bidding below the true marginal cost of operation b01. By

bidding strategically, the GenCo is creating/relieving congestion in the grid so as to maximize

the total revenues from the sale of energy as well as payoff from holding FTRs.

9It should be strongly noted that, in reality, GenCos are NOT allowed to submit downward sloping supply
offers. The ISO rearranges the blocks of supply offers submitted by GenCos in order to have upward sloping
supply offers.
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Figure 4.5 Pure Strategy Nash-Supply Function Equilibria
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To illustrate this point, we will use the case where only GenCo 1 holds FTRs ,i.e.,

F 1∗
13 =

PU13
β1

F 2∗
23 = 0

and compare GenCo1’s net-earnings, FTR revenues and energy sales revenues when submitting

supply offers strategically against when it submits the true marginal cost function,

br1 = b01 ∀ b2

The latter case will henceforth be referred to as the benchmark case. Also, GenCo 1’s supply

offer slope coefficient has been constrained to always be nonnegative, i.e. br1 ≥ 0, so that it

cannot submit negatively sloped “supply” function. However, as can be seen from Fig. 4.6(a),

GenCo 1’s optimal response to GenCo 2’s supply offer b2 is to always bid below its true marginal

cost slope coefficient.

From Fig. 4.6(d) below we can see that the net earnings of GenCo 1 are higher than the

benchmark case even though, br1 = 0 and much below the true slope coefficient b01 = 0.015.

Hence, as seen from Fig. 4.6(e) it is clear that GenCo 1 is losing money in energy sales, while

being compensated due to higher FTR revenues, as shown in Fig. 4.6(f). The following equation

should help make this point clearer. For notational convenience, (b1, b2) will be referred to as

(·):

NetEarnings1(·) = LMP1(·) ∗ pG1(·)− (a01 ∗ pG1(·) + b01 ∗ p2G1(·))︸ ︷︷ ︸
Energy sales revenue

+ (LMP3(·)− LMP1(·)) ∗ F13︸ ︷︷ ︸
FTR revenue

(4.42)

By offering to supply at constant marginal cost, i.e br1 = 0, which is always less than GenCo 2’s

reported supply function slope parameter b2, GenCo1 is dispatched at higher level as compared

to the benchmark case (see Fig. 4.6(c)). However, to maintain the transmission constraint to

hold at equality 10, an additional 1 MW injection of power by GenCo 1 requires reduction

in GenCo2 dispatch by 2 MW11. Hence, the aggregate system supply decreases (compared

10For the case of no transmission grid congestion, the payoffs from FTRs becomes zero, and hence is not of
relevance to this analysis.

11The result derives from the grid configuration, i.e, β1
13 = 2β2

13, which causes the power flowing on line PU
13

due to injection at bus 1 to be twice of that due to power injected at bus 2.
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to benchmark case) causing the price paid at load bus, LMP3 to increase. Hence, the LMP

differential LMP3 − LMP1 increases, which can be seen in Fig. 4.6(b) and the GenCo gains

higher revenues from holding FTRs.

However, it must be noted that the dispatch amounts, pG1 < F13 ∀ br1 (see Fig. 4.6(c)) and

as seen from Eq(4.42) the drop-off from energy revenues, due to lower LMP at generation bus,

is less than gain from FTR revenues because of higher LMP differential between the load bus

and generation bus. The results might change substantially for lower amounts of F13 held by

GenCo 1.

4.3.2 Day D − 1 FTR Auction

In the FTR auction each bidder intends to maximize its utility from holding FTRs after

considering its own production decision in the next period as well as its opponent’s bidding

strategies in the present period, subject to the ISO’s FTR market clearing results. The two-

level optimization problem is similar to the economic dispatch problem presented above. In

the first level, the ISO maximizes FTR auction revenue given the FTR bids and subject to

transmission and other contingency constraints. GenCos 1 and 2 bid F 1b
13 and F 2b

23 , respectively.

The ISO’s auction revenue maximization problem is,

max
F 1
13,F

2
23

ρ113 · F 1
13 + ρ223 · F 2

23

subject to:

β1 · F 1
13 + β2 · F 2

23 ≤ PU13

0 ≤ F 1
13 ≤ F 1b

13

0 ≤ F 2
23 ≤ F 2b

13 (4.43)

The Lagrangian is presented below followed by the graphical solution (fig. 4.7) for the linear

programming problem.

Λ = ρ113 · F 1
13 + ρ223 · F 2

23 + µ13[PU
13 − β1 · F 1

13 + β2 · F 2
23] + α1 · [F 1b

13 − F 1
13] + α2 · [F 2b

23 − F 2
23] (4.44)
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The first order necessary conditions are as following:

F 1
13 : ρ113 − µ13 · β1 − α1 = 0 (4.45)

F 2
23 : ρ223 − µ13 · β2 − α2 = 0 (4.46)

µ13 : PU13 − β1 · F 1
13 + β2 · F 2

23 ≥ 0 ⊥ µ (4.47)

α1 : F 1b
13 − F 1

13 ≥ 0 ⊥ α1 (4.48)

α1 : F 2b
23 − F 2

23 ≥ 0 ⊥ α2 (4.49)
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Figure 4.7 FTR Auction Graphical Solution

The graph shows the various constraints where the dashed boxes indicate the direction of fea-

sible region. The feasible set of solutions is depicted using the thicker line. Finally, depending

on the value of FTR bid price ratio,
∣∣∣ρ113ρ223

∣∣∣, either of the two shown iso-revenue lines is feasible.

Based on these fact, the results for the linear programming problem are summarized as follows.

Case 1: ∣∣∣ρ113ρ223

∣∣∣ < ∣∣∣β1β2 ∣∣∣ =⇒

 F 1∗
13 = F 1b

13 ; α1 ≥ 0

F 2∗
23 < F 2b

23 ; α2 = 0
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The resultant allocation of FTRs is as follows:

F 1∗
13 = F 1b

13 (4.50)

F 2∗
23 =

PU13 + β1F
1b
13

β2
(4.51)

The FCPs for the awarded FTRs can be calculated using the formula in equation (24) and

from the first order necessary conditions.

FCP13 = µ13 · β1 = ρ113 − α1 = ρ223 ·
β1
β2

(4.52)

FCP23 = µ13 · β2 = ρ223 (4.53)

The results verify the properties 1-3 for FTR clearing prices presented in section 3.4 above.

It can be seen that the FCP23 of the marginal FTR is equal to the bid price ρ23 and that

the FCP13 of FTR cleared in full is less than bid price ρ13. Also, FCP13 can be expressed a

function of bid price ρ23 of the marginal FTR. Similarly, results are symmetric for the other case.

Case 2: ∣∣∣ρ113ρ223

∣∣∣ > ∣∣∣β1β2 ∣∣∣ =⇒

 F 1∗
13 < F 1b

13 ; α1 = 0

F 2∗
23 = F 2b

23 ; α2 ≥ 0

The resultant allocation of FTRs is as follows:

F 2∗
23 = F 2b

23 (4.54)

F 1∗
13 =

PU13 + β2F
2b
23

β1
(4.55)

The FTR clearing prices are as follows:

FCP23 = µ13 · β2 = ρ223 − α2 = ρ113 ·
β2
β1

(4.56)

FCP13 = µ13 · β1 = ρ113 (4.57)

4.4 Three-Bus Grid: Agent Based Model

As suggested by the discussion in previous sections, the study of risk management in whole-

sale power markets is complex, requiring detailed modeling and analysis of strategic decision
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making by market participants, market operators, and oversight agencies. Analytical models

are not able to sufficiently address the complexity of this decision making process. In this

section we present an alternate approach that uses reinforcement learning (RI)) to model the

behavior of GenCos in the two markets. The model uses a two-tier matrix game approach to

obtain the joint-optimal bidding strategies in the two markets, when the GenCos compete with

each other to maximize the individual net-earnings.

A similar approach has been used by Babayigit et al. (2010) to study the same problem.

However, their study differs from our work in two significant ways: 1) The form of objective

function in ISO’s FTR auction used in ) differs from the general form used by ISOs. We have

used the more general form of objective function as seen in ISO-NE tutorial on FTR auctions),

2) The primary objective of their study was to validate the modeling method by comparing

theie results to the well established results from an earlier study by Joskow and Tirole. The

authors were able to illustrate the existence of Nash equilibrium in supply offer strategies, given

certain portfolios of FTR already acquired. They also show the effects of FTR portfolios on

suppy offer strategies, and the overall joint payoffs. However, the effect of “anticipated” supply

offer strategies on FTR bidding strategies was not established.

In this paper, we establish the feedback mechanism in the bidding strategies of two markets.

The results show that GenCos’ FTR bidding strategies are affected by supply offer strategies

based on the following factors: 1) Location on the grid, 2) Thermal limits on transmission lines.

A description of the process is now presented.

4.4.1 Two-Tier Matrix Game Approach

A two-tier matrix game approach was used to replicate the process of backward induction,

used commonly in solving multi-stage game theoretic models. The upper tier matrix represents

the FTR auction (Stage 1), and the bottom layer represents the day-ahead energy market. At

each stage the GenCos can choose from a set of action choices. The process of obtaining joint

bidding strategies, as depicted in Fig. 4.4.1, involves 2 players that select from N different FTR

portfolios, and J = 2 12 supply offer choices. The process involves the following steps:

12The set of action strategies is arbitrarily chosen in order to ease the exposition of the two-tier game process.
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1. In Stage 1, GenCoi, for i = 1, 2 selects FTR portfolio FTRni , for n = 1..N

2. In Stage 2, calculate the payoff matrix for different combinations ofGenCoi energy supply-

offer strategies anij , for j = 1, 2, given FTRni

3. Use reinforcement (RI) learning to solve Stage 2 problem to obtain supply offer strategies

that yield net earning, NEni (an1j , a
n
2j)

4. Assign NEni (an1j , a
n
2j) as net earnings for the given FTR portfolio combination.

5. Use RI learning to solve Stage 1 problem to obtain the FTR portfolios.

The iterative method described above yields the joint bidding strategies for the GenCos and

the overall joint payoff from the two markets. The biggest advantage of using this method

is that it allows analysis to proceed even in cases where no pure-strategy Nash equilibria, in

supply offer strategies, exist13.

4.4.2 GenCo Action Set Selection

We will now describe the process used to setup action choices of GenCos in the two markets.

4.4.2.1 Day-Ahead Market Action Choice Set

GenCo report their marginal production cost functions as supply offers in DA market, de-

fined as Ci(pGi) = a0i +2b0i pGi, for i = 1, 2, ...I, where a0i and b0i represent the ordinate and slope

of true marginal cost. So, the supply offers reported GenCo i, consist of the pair (ari , b
r
i ). The

GenCos also report the pair (CapL, CapU ) as lower and upper production capacities. However,

we assume that the upper and lower capacities are fixed at the true levels. Additionally, to

further simplify the model we use a single multiplier dai to obtain the reported supply offer,

dai ∗ (a0i , b
0
i ). Finally, the supply offer choice variable is allowed to be either (high, true, low),

13As shown in Nanduri and Das ), reinforcement learning algorithm can be used to derive pure-strategy
equilibria. However, various researchers such as Wilson, Oren), have shown that existence of pure-strategy
supply function equilibria cannot be guaranteed.
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Figure 4.8 Two-Tier Matrix Game Approach for Joint-Optimal Bidding Strategies

i.e.,

dai =


daHi , if dai > 1

daTi , if dai = 1

daLi , if dai < 1

4.4.2.2 FTR-Auction Action Choice Set

FTR auction demand bid parameters for GenCo i located at bus i are following:

• Source bus i and sink bus 3

• Maximum price willing to pay: ρi3 $/MW

• Maximum amount willing to buy: FTRMax
i3 MW
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Like the DA market a single multiplier fi is used to obtain the FTR demand bids fi ∗

(ρi3, FTR
Max
i3 ) for the GenCos. The action choices in FTR auction are also allowed to be

either of (high, true, low),

fi =


fHi , if fi > 1

fTi , if fi = 1

fLi , if fi < 1

The payoff from an FTR portfolio is settled from the congestion rent collected after the settle-

ment of DA market. Hence, if all GenCos are risk neutral, the theory of rational expectations

says that the FTR demand bid price and quantity reflect the expectations of GenCo’s FTR

payoffs (and hence, the congestion rent “owed” by them) after the settlement of DA mar-

ket.“True” FTR demand bid parameters (ρi3, FTR
Max
i3 ) are set so that, if all FTR demand

bids are “true,” and all DA energy supply offers are “true,” then for all GenCos i = 1...I,

FTR Payment of GenCo i = FTR Revenue (Congestion Rent) of GenCo i

This condition implies that if all GenCos are truth telling in both the marets and bid for FTRs

based on the expectations of DA market settlements, then the total amount paid by all Gen-

Cos to the ISO in the FTR auction equals the congestion rent collected (and hence, the FTR

payoff they receive) in DA market.This condition also implies that GenCo i has fully hedged

its congestion risk in the DA market.

Hence, given that the above conditions hold, Oren et al ) demonstrate the equivalence

between FTR auction and DA market, and

FTR Auction Revenue = Congestion Rent in DA Market

4.4.3 Results

To see how the GenCos learn their bidding strategies in the two markets, the same three bus

grid was used as in the analytical model presented above. Additionally, to study the effects of

spatial location on a GenCo’s bidding strategies, we imposed thermal limit on one transmission
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line at a time. The action sets for the two GenCos were selected as reported earlier and the

bidding strategies were obtained using the process described in section. The process was run

50 times.

Case 1: Thermal Limit on Line 1→ 3

The bidding strategies for the two GenCos, in FTR and DA markets, when thermal limit

is imposed on line 1 → 3 are shown in Fig. 4.4.3. The end points of the blue vertical line

represent bidding strategies of GenCo1 in the FTR auction and DA market, respectively for

one particular run. The results show that GenCo1 reports true or lower than true marginal

cost of production in 48 out of the 50 runs.

In general, a GenCo with low marginal cost of production will be dispatched before a GenCo

with higher marginal cost14. Hence, by reporting lower than true marginal cost as the energy

supply offer, GenCo1 raises the chance of getting dispatched to provide energy.

Also, 1MW power injection by GenCo1 at bus 1 causes twice as much power flow on

transmission line 1 → 3 as compared to 1MW power injection by GenCo2. Hence, GenCo1

causes thermal limit constrained line 1→ 3 to become congested faster than GenCo2.

Finally, given that there is no production capacity limit on either GenCo, the LMPs at

their respective buses (if they are dispatched) reflect the marginal costs of production of the

last unit of power produced by the GenCos. Hence, a low marginal cost reported by GenCo1

implies lower LMP at its bus compared to what the LMP would be, if the GenCo had reported

true marginal cost as its energy supply offer. This implies that the GenCo is willing to take

losses from its energy sales. However, low LMP at bus 1 also implies that the LMP differentials

are higher, for instance, LMP3 − LMP1 increases as LMP1 decreases. Thus, the payoff from

GenCo1’s FTR portfolio increases if the LMP differentials increase.

If GenCo1 is able to “create” enough revenues from its FTR portfolio to offset the losses

from energy sales, then the logical strategy in FTR auction is to bid high price, in order to

secure as many of the desirable FTRs. We can see from Fig. 4.4.3 that GenCo1 ALWAYS

selects high action choice in the FTR market. Hence, it can be concluded that GenCo1 is able

14In certain cases of grid congestion patterns, low cost GenCo might be able to be dispatched before the higher
cost GenCo.
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to learn to utilize its locational advantage i order to maximize the combined payoffs from the

two revenue sources.
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Figure 4.9 GenCo1 and GenCo2 Action Choices when Thermal Limit on line 1→ 3

GenCo2, on the other hand, does no gain much from reporting low marginal cost as its

energy supply offer in the DA market, and its dominant strategy is to report true or higher

than true marginal cost of production. Consequently, GenCo2 is not able to create simlar LMP

differentials due to the higher LMP at bus 2, and so, it does not gain much from a bigger

portfolio of FTRs. We can see that GenCo 2 has no clear or dominant strategy to submit

demand bids in the FTR auction.

Case 2: Thermal Limit on Line 1→ 2

The action choices of the GenCos in FTR auction and DA market, when thermal limit is

imposed on line 1→ 2, are shown in Fig. 4.4.3. It is clear that both GenCos choose to report

true or higher than true marginal cost of production as their supply offers. Consequently, the

LMPs at their respective buses are also high, and hence, the LMP differences are not high

enough to increase the payoffs from FTR portfolios. We can see that the GenCos have no clear

dominant strategy to submit demand bids in FTR auction, as can be seen from the results.
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Figure 4.10 GenCo1 and GenCo2 Action Choices when Thermal Limit on line 1→ 2

4.5 Conclusion

By design, the bidding strategies in physical and financial electric power markets are intri-

cately connected. Additionally, the market participants interact with others in either competi-

tive or cooperative manner, in both the markets. The impact of market participants’ strategic

behavior/interaction can have significant impact on the outcomes of the two markets. In this

study, we established a theoretical framework to analyze the bidding strategies of the market

participants. We demonstrated the impact of FTR portfolios on the supply offer strategies

of market participants in day-ahead markets. In particular, we see that pure strategy Nash-

supply function equilibrium exists only for some combinations of FTR portfolios. We then used

agent-based model to study the joint bidding strategies of market participants. It was observed

that the market participants are able to systematically coordinate their strategies in the two

markets. We also see that the location of market participants on the grid, i.e., the proximity

to capacity constrained transmission line has a significant impact on their bidding behavior.

In some cases the market participants are willing to make losses from the sale of energy in the
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day-ahead market, as long as the revenue from FTR portfolio is large enough to compensate

for the losses.
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CHAPTER 5. Strategic Wind Trading by Firms with Mixed Portfolio of

Generation Assets

The renewable portfolio standards (RPS) being enforced in various states and regions within

the US have made it imperative for utilities to acquire from 15% to 33% of their energy from

renewable resources. Although at present only about 3% of the total electric power produced

in the US is from wind, as more US states begin enforcing RPS schemes the bulk of this

renewable energy is expected to come from wind. The market rules governing wind power are

still evolving, and could lead to profitable opportunities for some firms while disadvantaging

others. The resulting market outcomes will depend on the exact nature of rules and the mix

of generation assets owned by firms in a region. In this study we will examine the effects

of market rules on the trading strategies of profit-seeking firms that supply electric power

in wholesale markets using portfolios of generation assets that combine both conventional and

wind resources. The findings from this study should generalize to any renewable energy resource

for which uncertain generation is a major factor.

5.1 Introduction

Ownership structure in an industry can have substantial effects on the overall efficiency of

market operations. It has been observed that financial bonding of generation and utility com-

pany could reduce a generator’s incentive to exercise market power1. However, a generation

company with units located at different buses of the grid could influence prices (and dispatch

quantities) by physical and/or financial witholding of power (Somani and Tesfatsion (2008)).

For example, Enron, in 2000, found it profitable to shut down some generation units causing

1Vertical integration implies that the company with ownership of both generation and distribution, transacts
power at the same price and hence, has no incentive to influence the price outcomes
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transmission congestion and higher prices for its other generation sites. The strategic reporting

of supply offers led to wild price spikes in the short-term, and eventual break down of the

electricity grid. Many lessons from the disastrous chapter have been learned, and regional elec-

tricity market monitoring agencies have implemented various market power mitigation policies

to keep a strict vigil on the activities of market participants.

Bulk of electricity in US is produced using coal and gas fired power plants. However, given

the recent moves towards greater self reliance for energy needs, as well as driven by a need to

switch to cleaner renewable generation sources, wind power has gained focus through various

political initiatives. However, electric energy production from wind is very uncertain and wind

flow prediction remains a very complex problem2 and hence, wind energy producers are not

subject to the strict market rules adhered to by other conventional generation sources. Wind

is usually considered as negative load (demand), which reduces the need to dispatch power

from other conventional sources. Increased penetration of wind would, presumably, affect

the energy and reserve requirements (from conventional generation units) needed to maintain

reliable supply of electric power. Hence, as wind penetration increases over the years, so might

the uncertainty associated with electric power generation from conventional energy sources.

The market rules governing wind energy are still evolving. As will be explained in some detail

later, generation companies with diverse portfolio of generation fuel units (i.e., owning both

conventional generators and wind farms) could utilize the market rules to maximize their joint

profits by reporting supply offers strategically.

To our knowledge, the impact of wind power on market operations while considering the

ownership structure of a firm, has not yet been studied. In Wang et al. (2008), Meibom (2007)

and Jonsson et al. (2010), the authors analyze the impact of uncertain wind on the electricity

market auction mechanism, without any explicitly modeled market structure. In Botterud

et al. (2010), the authors present the optimal bidding strategies of wind farmers under different

assumptions of risk preferences. However, the model is simplified by assuming that the wind

farmers are price takers and also, that they own no other generation sources. In reality, strategic

2See ANL () for a comprehensive list of work on wind power forecasting
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bidding by wind farms3 can create price scenarios that either directly increase the wind farm’s

profits or of the other generation resources owned by the same company.

In this study, we will examine the bidding strategies of horizontally integrated firms that

supply electric energy using a portfolio of generation assets. The organization of this chapter

is as follows. Section 2 provides an overview of restructured electricity markets, along with the

dynamics of the two-settlement energy market process. Section 3 provides strategic incentives

of mixed generation portfolio companies using data from MISO markets, as well as analytical

and simulation models. Section 3 presents a two-bus grid analytical to study optimal bidding

strategies of horizontally integrated firms. Section 5 presents results from numerical model

where wind plant’s optimal supply offer strategy is modeled as a bi-level optimization problem.

Section 6 provides general conclusions and proposed future work.

5.2 Restructured Electricity Markets – Overview

Electric power industries around the world have undergone restructuring - from government

regulated to more market oriented. Restructuring has entailed unbundling of hitherto vertically

integrated organizations into independently managed generation, transmission and distribution

systems. As a result, electric power markets can be divided into wholesale and retail layers.

The wholesale power market design proposed by the U.S. Federal Energy Regulatory Com-

mission (FERC) in an April 2003 white paper FERC (2003) encompasses the following core

features: central oversight by an independent system operator (ISO); a two-settlement system

consisting of a day-ahead market supported by a parallel real-time market to ensure continual

balancing of supply and demand for power.

We will now describe the day-ahead and real-time energy markets in some detail.

3Other generation units can engage in strategic bidding also. However, generation capacities and production
costs of conventional units are known in advance and hence, can be more closely monitored by market agencies.
Wind being an uncertain source of energy can attribute over/under reporting of generation capacity to subjective
assessment of wind flow forecasts.
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5.2.1 Day-Ahead Energy Market

Most conventional generators require advanced notice to start. By operating a financially

binding day-ahead market, the ISOs allow generators to receive operating schedules ahead of

time, and provides a financial incentive for them to perform as scheduled. Fig. 5.1 shows the

timing of daily operations at Midwest ISO (MISO).

Figure 5.1 ISO activities during a typical day D

Day-ahead energy market is a purely financial market, i.e., no real (physical) injection or

withdrawal of electric power takes place. The cleared dispatch quantities and the associated

LMPs can be thought of as forward contracts to sell(buy) power, between the ISOs and the

generation companies(load serving entities). Like a forward contract in any other commodity,

the parties (buyers or sellers) must make whole the contract on the actual trading day (the day

after the settlement of day-ahead market) and any shortfalls in generation (or additional load

demand) must be accommodated in the real time by the ISO.
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5.2.2 Real-Time Energy Market

Real-time energy markets are also sometimes referred to as spot-markets and the physical

“exchange” of power contracted in the day-ahead market takes place in real-time markets.

Because there is always some deviation in real time of actual generation and load from what

was scheduled in the day-ahead market, one of the key functions of an ISO is to perform

real-time balancing of loads and generation. The ISO performs this through the real-time

imbalance energy market, which is the mechanism whereby supply resources are selected to

be increased (incremented) or decreased (decremented) in order to maintain system balance.

The appropriate awards (penalties) are paid to (paid by) the involved entities that are used in

creating system balance.

If there is no change in system condition from the time of day-ahead scheduling to the

real-time opearations, and the demand and wind conditions are exactly as predicted, then the

LMPs in the two markets are exactly equal, i.e., there are no arbitrage opportunities. However,

almost always the conditions deviate and often in unexpected ways, like transmission line or

generation unit break downs that necessitate bringing up reserve units or other units out of

merit-order causing regular price spikes in the real-time. On average however, the day-ahead

LMPs observed in reality are higher than the corresponding real-time LMPs, which shows that

arbitrage opportunities exist that can be utilized by market participants4.

5.3 Horizontal Integration and Market Power

In this section 5 we will first present data from Midwest ISO power market that gives an

idea of the existing ownership structure in the midwest region. We then used an analytical

model provide some intuition for strategic reporting of wind supply offers by firms with mixed

generation portfolios. Finally, we use simulation results to show the affects of wind power with-

4Many ISO’s now allow virtual bidding whereby market participants even with no physical assets can bid to
supply or buy power in the day-ahead market, but must close out their positions by buying back (or selling) the
same amount in the real-time market. It is argued that virtual bidders should help in drawing down arbitrage
opportunities by utilizing any information that might be causing deviation in prices in the day-ahead and real-
time markets. However, the virtual markets in most ISO’s (except PJM) are still young and evolving, so the
jury is still out.

5I would like to express my deepest gratitude to Dr. Huan Zhao who worked very hard to complete this
section with me.
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olding (in day-ahead market relative to real-time market) on net-earnings of other generation

units.

5.3.1 Midwest ISO Market Data

We now present some data, reported by Midwest ISO, to give an idea of the industry

structure in the midwest region. The facts presented might illustrate how much the industry

strucutre matters in determining the incentives that generation companies might have to act

strategically in order to influence market outcomes. The MISO day-ahead cleared supply offer

data files show information takes the following tree structure:

Generation Company (Unique ID) → Generation Company. Generation Unit (Unique ID)

→ Generation Unit. Unit Type (Unit Type ID)

These data show which generation companies were dispatched to produce, using which of

their units, where each unit is distinguished by type. From these data one can determine the

actual mix of generation fuels used by the generation companies. In addition, one can determine

the size of each generation company relative to the market as a whole as measured in terms of

total revenues earned.

Table I provides a breakdown of the total energy dispatched in the MISO on November

16, 2010, sorted by unit type. The data are aggregated across all generation companies for all

24 hours. It can be seen that total cleared wind dispatch is second only to total cleared coal

dispatch, and similarly for total revenues earned.

Table 5.1 Total Cleared Dispatch by Unit Type for Day-Ahead Market on 11/16/2010

Unit Type Unit Type Code Total Energy Dispatch (MWh) Total Revenue ($) % of Total Energy Dispatch % of Total Revenue

Steam Turbine 4 1,327,256.50 37,278,036.16 92.11 93.51

Comine Cycle ST 5 0 0 0 0

Combustion Turbine 27 9210.30 349988.23 0.64 0.88

Diesel 31 281.00 8705.06 0.02 0.02

Run of River 41 16817.60 411183.43 1.17 1.03

Pumped Storage 42 1200.00 42638.00 0.08 0.11

Combine Cycle CT 51 0 0 0 0

Combine Cycle Aggregate 52 17651.10 542053.74 1.22 1.36

Wind 61 42,271.40 664,749.67 2.93 1.67

Other Fossil 71 25977.30 560628.45 1.80 1.41

Other Peaker 72 0 0 0 0

Demand Response Type 1 87 0 0 0 0

Deman Response Type 2 88 249.00 6978.67 0.02 0.02
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In Table II we report cleared coal and wind dispatch amounts, aggregated across all 24 hours

of Novembers 16, 2010, for all MISO generation companies that own both coal and wind plants.

The coal and wind energy dispatch levels are separately listed for each owner, as identified by

MISO owner codes.

Table 5.2 Companies Cleared to Dispatch Both Coal and Wind Energy on 11/16/2010

Owner Code Wind (MWh) Coal (MWh)
122062454 480.0 53310.6
122062463 48.0 240.0
122062474 226.0 7735.6
122062486 279.0 8899.6
122062512 1738.0 3651.3
122062517 263.0 26163.0
122062548 0 6151.0
122062550 5231.8 20183.0
122062553 744.0 4550.0
122062561 683.2 15476.5
122062581 512.0 38415.4
122062590 9115.0 85147.8
122062603 836.2 8275.3
122062624 319.0 12278.4
122062627 243.0 0
122062642 2253.0 38385.2
122062646 1109.0 0
122062647 268.0 374.4
122062649 1257.8 29852.6
125767546 1770.0 8459.0
226474818 73.3 150353.6
395307103 1014.0 121690.8
576468110 2211.0 26958.0
576468116 1294.0 21762.6

Total 31968.3 688313.7
Market Total 42271.0 1327300.0

% of Total 75.6% 51.8%

Note that the generation companies that were cleared to produce about 50% of total coal

energy for the day were also cleared to produce about 75% of the total wind energy for the

same day. This suggests that these companies could have an incentive to report strategic supply

offers that take advantage of possible synergies between coal and wind generation.

Interestingly, however, the supply offers for conventional generation units in the MISO

are observed to be rather constant over time. Consequently, in this study we will focus on

the potential for profitable strategic wind trading by generation companies that own both

conventional and wind generation, while the supply offers from conventional generation sources

are reported “truthfully”. In particular, we will investigate the potential for wind plants to

profitably under/over- report in day-ahead markets, relative to the expected real-time wind
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power output. Determining the exercise under/over-reporting by wind plants purely from

empirical data is complicated due to the uncertainty of wind generation. The inter- and intra-

day variability observed between reported supply offers and actual wind power output could

simply be the result of intermittent wind flow.

To get around this problem, we use empirically-grounded analytical and computational

models to study the strategic wind-trading opportunities open to mixed-portfolio generation

companies. These modeling efforts are described in the following section.

5.3.2 Incentives for Strategic Wind Power Supply Offers

The following symbols are used in the model:

Table 5.3 Description of Variables

Variable Desription
π Net revenue of the multi-fuel generation company at state 0
sida Conventional generator i’s offer in day-ahead
sirt Conventional generator i’s offer in real-time
swda Wind power’s offer in day-ahead
pdi Conventional generator i’s cleared dispatch in day-ahead
pri Conventional generator i’s cleared dispatch in real-time
prw Wind power injection in real-time
lmpdi Conventional generator i’s cleared price in day-ahead
lmpri Conventional generator i’s cleared price in real-time
lmpdw Wind power’s cleared price in day-ahead
lmprw Wind power’s cleared price in real-time

In this section, we are going to discuss how the wind capacity withholding behavior affects

a mixed-portfolio generation company’s (MGC) net revenue. This model follows the market

rules adopted by Midwest ISO, and focuses on the two-settlement market operation described

earlier.

Suppose there are a set of N buses on the power grid, and there can be more than one

generation company selling power to the wholesale market. Starting with the simplest case,

we assume that wind bidding is the only variable between day-ahead and real-time market.

This assumption also relies on the market rules (and empirical observation) that conventional

generation units can not change their real-time supply offers due to economic reasons while

wind generation, as an intermittent resource, is taken as is in the real-time. Hence, wind power
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could deviate from day-ahead supply offer in real-time market. With this simplification, if the

generation company’s day-ahead wind supply offer swda equals the real-time wind power injection

prw, the two markets will run under the same conditions. Therefore, day-ahead market cleared

LMP at bus i, lmpdi is the same as real-time, lmpri . Similarly, day-ahead market cleared power

dispatch pdi is the same as real-time dispatch, pri . Notice that, we use pi to stand for cleared

power dispatch at bus i, and use si to stand for supply offer.

In this market, there exists an MGC M that has both conventional and wind power gener-

ators. Conventional power generator is located at bus i, where i ∈ M , and wind generator is

located at bus w. We assume that company has full information about real-time market wind

availability, prw, i.e., they can make accurate forecast of wind power. The MGC searches for

the best wind bidding strategy to maximize the total net earnings π. Suppose that company

M is the only company that strategically reports the wind supply offer, and hence, it is the

only resource that deviates in real-time from day-ahead.

For a typical day-ahead operation, generation company makes prediction of prw for next

day’s wind power. Following the above discussion, the real-time operation state and system

variables are hence determined. Real-time wind power prw is an exogenous variable. Given

prw and all conventional generators real-time offer sir, which are same as day-ahead offers, the

real-time power dispatch pri and LMPs lmpri are determined from real-time DCOPF. Therefore,

real-time system variables do not depend on day-ahead wind bidding. Then the net-earning

company M is,

π =
∑
i∈M

pdi (s
w
da) · lmpdi (swda) +

∑
i∈M

(pri − pdi (swd )) · lmpri+

pdw · lmpdw(swda) + (prw0 − pdw) · lmprw −
∑
i∈M

C(pri )

(5.1)

Equation (5.1) shows that the generation company’s net earning is a function of its day-

ahead wind bidding. Then it will seek for the best wind supply to maximize the net earning.

When we look at the effect of wind bidding on other bus’s dispatch, we need to consider

the topology of the network. As shown in Zhou et al. (2010), keeping the unit commitment

and supply offers unchanged, there exists a linear relationship between system variables and
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load perturbation, within a certain system pattern6. We first analyze wind bidding behavior at

the point where the true expected real-time wind power is bid into the day-ahead market, i.e.,

swda = prw. Suppose this point lies inside a certain system pattern, then a small perturbation of

wind bidding will not change the determinants of the linear relationship. Denote
∂lmpdi
∂pdw

= αi,

and
∂pdi
∂pdw

= βi, for all i, the differential of generation company’s total net earning w.r.t. wind

supply offer is as follow:

∂π

∂swda
|swda=prw =

∑
i∈M

αi · pdi +
∑
i

βi · (lmpdi − lmpri ) + αw · pdw + (lmpdw − lmprw)

=
∑
i∈M

αi · pdi + αw · pdw
(5.2)

The second equality results from that the fact that in the neighborhood of pdw = prw, day-

ahead price will be approximately same as the real-time price. In general, αi < 0 since more

wind production leads to reduction in power produced by generation units with higher produc-

tion costs, and hence decrease in system price7. Suppose that αi < 0, then dπ
dpdw

< 0, which

means that hybrid GenCo has incentive to bid lower wind power in the day-ahead market.

If generation company deviates from its true expectation of real-time wind availability and

witholds wind power in the day-ahead market, it will create positive price difference (lmpdi −

lmprw) > 0, i.e., inter-temporal arbitrage opportunity. Then equation (5.2) becomes:

∂π

∂swda
|swda<prw =

∑
i∈M

αi · pdi +
∑
i∈M

βi · (lmpdi − lmpri ) + αw · pd − w + (lmpdw − lmprw)

=
∑
i∈M

αi · pdi + αw · pdw + (lmpdw − lmprw) +
∑
i∈M

βi · (lmpdi − lmpri )

=
∑
i∈M

αi · pdi + αw · pdw + (
∑
i∈M

βi · αi + αw) ·∆pw

(5.3)

The power injection and withdrawal in the grid must be in balance at all times, so that

the extra injection of wind power in real time must be compensated by power reduction by

other units, i.e.,
∑
i∈N

βi + 1 = 0, where N is the set of all generators in the grid. With this

6A system pattern as defined in Zhou et al. (2010) consists of congested transmission lines and marginal
generation units.

7There can also be some buses with αi > 0 due to the network effects.
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information it is still hard to sign of the second term of the above equation since it depends on

the sensitivity of α. The hybrid GenCo is best to further lower their wind bid in the day-ahead

market until either dπ
dpdw

= 0 or until they withhold all their wind capacity, i.e., pw = 0.

From the analysis above, we can see the profitability of strategic wind bidding depends on

the network sensitivity. Given that conventional generation units do not change their supply

offers, it is the load pattern that determines network sensitivity. As discussed in Zhou et al.

(2010), the shadow price σl of line capacity is a linear function of load at a give bus. It is

also known that location marginal price (LMP) is a function of line capacity shadow price,

LMPi = p +
∑
l

τi,l · σl. Only the congested line l affects the LMP at bus i. In peak hours,

demand is more likely to create congestion on the grid and cause higher LMP. Therefore load

perturbation in the peak hour has a bigger impact on the LMP, and hence GenCo’s profit.

Given that wind power is generally treated as negative load, similar reasoning can be used to

determine the affects of wind power on system LMPs.

5.3.3 Net-Earnings of Firms Reporting Wind Supply Offers Strategically

We now show the effects of company M ’s wind bidding strategy of under-reporting supply

offers (relative to real-time market) on net-earnings of conventional GenCos in a 5 bus test case.

The topology of the network is shown in figure 5.2 above. In addition to the conventional

generation resource, we add wind production on bus 5, which replicates the situation that the

wind plant is located in a remote area. The penetration of wind power is scaled to 3% of

total installed generation capacity, which is as observed in MISO region. Following the analysis

of the last section, we test the case that wind farmer withholds ALL the capacity from day-

ahead market. The simulation compares the revenues of the 5 conventional generators, with

and without wind capacity withholding behavior. The results are listed in Table 5.4 (dollar

amount) and Table 5.5 (percentage change). It is noticed that, the impact of withholding is

different from generator to generator, and hour to hour. Particularly, it has a bigger impact

on GenCo 3 and 5, but very little on GenCo 4. Also, the impact of wind withholding is most

significant at hours 17 and 18, which are the peak hours. It is observed that wind witholding

could even have negative effect on GenCo 3’s net-earnings in hour 18.
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Figure 5.2 5- Bus Grid with Wind Plant

The results provide insight into the incentives of companies with mixed generation portfolios

to report their wind supply offers strategically. As shown in section 5.3.1, we see that ownership

structure in MISO provides precisely such an incentive to engage in strategic reporting of wind

supply offers. In the following section we provide a more rigorous model to study the strategic

incentives of an MGC company.

5.4 Two-Bus Grid: Analytical Model of Strategic Wind Trading

To display the wind bidding strategy of a mixed generation profile company (MGC), we

will now use the following (Fig. 5.3) a two-bus grid example, where conventional GenCos G1

and G2, and LSEs L1 and L2 are located buses 1 and 2, respectively. The wind plant W is

located at bus 1 and is owned by the same company (MGC) that operates G1.

The model setup is as follows:

• Let pG1 and pG2 be the power injected by the two conventional GenCos at their respective
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Table 5.4 Extra Net-Earnings from Wind Withholding (dollar)

hour GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5 SP Change

0 10.58 1.33 4.94 0.00 40.38 NO

1 9.66 1.18 3.63 0.00 36.38 NO

2 9.32 1.11 3.00 0.00 34.75 NO

3 8.92 1.06 2.59 0.00 33.12 NO

4 5.20 0.61 0.99 0.00 19.16 NO

5 9.57 1.13 2.76 0.00 35.46 NO

6 9.76 1.15 2.98 0.00 36.26 NO

7 11.82 1.43 4.62 0.00 44.35 NO

8 12.05 1.53 6.33 0.00 46.22 NO

9 14.29 1.89 9.64 0.00 55.81 NO

10 14.92 2.00 10.65 0.00 58.54 NO

11 15.00 2.02 10.92 0.00 58.99 NO

12 19.71 2.64 15.46 0.00 77.44 NO

13 18.40 2.44 13.69 0.00 71.96 NO

14 15.72 2.07 10.84 0.00 61.31 NO

15 19.62 2.59 14.39 0.00 76.60 NO

16 16.56 2.23 12.57 0.00 65.17 NO

17 0.90 0.00 (392.21) 1.17 188.36 Yes

18 1.66 0.09 2278.41 0.00 138.42 Yes

19 14.83 2.03 11.46 0.00 58.84 NO

20 13.53 1.85 9.82 0.00 53.51 NO

21 11.64 1.57 7.49 0.00 45.83 NO

22 10.86 1.43 6.16 0.00 42.26 NO

23 10.13 1.30 4.91 0.00 38.91 NO

buses. The quadratic cost functions of the GenCos are:

C1(pG1) = as1 · pG1 +
1

2
bs1 · p2G1

C2(pG2) = as2 · pG2 +
1

2
bs2 · p2G2

where asi , b
s
i for i = 1, 2 are the true cost function parameters of the GenCos.

• Let pL1 and pL2 be the power withdrawn by the two LSEs at their respective buses. The

quadratic benefit functions of the LSEs are:

B1(pG1) = ad1 · pL1 −
1

2
bd1 · p2L1

B2(pG2) = ad2 · pL2 −
1

2
bd2 · p2L2

where adj , b
d
j for j = 1, 2 are the true benefit function parameters of the LSEs.

• The wind plant injects power prw in the real-time markets, while it strategically reports
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Table 5.5 Extra Net-Earnings from Wind Withholding (%)

hour GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5 SP Change

0 18.47% 648.05% 0.45% 0.00% 3.02% NO

1 16.77% 525.42% 0.50% 96.60% 2.79% NO

2 16.18% 498.92% 0.58% 0.00% 2.71% NO

3 15.44% 449.52% 0.61% 0.00% 2.61% NO

4 8.48% 126.99% 0.29% 0.00% 1.51% NO

5 16.77% 578.29% 0.72% 0.00% 2.81% NO

6 17.13% 609.16% 0.70% 0.00% 2.86% NO

7 21.35% 1260.87% 0.75% 0.00% 3.45% NO

8 21.50% 1071.53% 0.51% 0.00% 3.44% NO

9 26.16% 2231.17% 0.51% 0.00% 4.03% NO

10 27.52% 2836.38% 0.51% 0.00% 4.20% NO

11 27.67% 2847.00% 0.50% 0.00% 4.21% NO

12 39.61% 1000.00% 0.74% 0.00% 5.62% NO

13 36.23% 97386.57% 0.72% 0.00% 5.26% NO

14 29.56% 5099.91% 0.60% 0.00% 4.46% NO

15 39.58% 1000.00% 0.80% 0.00% 5.64% NO

16 31.40% 7322.44% 0.58% 0.00% 4.67% NO

17 1000.00% 0.00% -2.06% 0.83% 10.90% Yes

18 2.97% 67.54% 84.32% 0.00% 9.62% Yes

19 27.11% 2292.11% 0.44% 0.00% 4.12% NO

20 24.21% 1355.98% 0.39% 0.00% 3.75% NO

21 20.24% 717.38% 0.33% 0.00% 3.23% NO

22 18.77% 603.85% 0.34% 0.00% 3.04% NO

23 17.47% 526.13% 0.37% 0.00% 2.87% NO

supply amount pdw in the day-ahead market. It is assumed that the wind plant can

accurately forecast it’s real-time power output.

• After receiving GenCo supply offers and LSE demand bids, the ISO solves economic

dispatch (ED) problem by maximizing the total net benefit subject to physical network

power-flow, and generator capacity constraints. It is assumed that the wind power is

used (as bid by wind plant) by ISO before the conventional GenCos because of the near-

zero marginal cost of production. ISO’s economic dispatch problem can be formulated as

follows:

max
pG1,pG2,pL1,pL2

∑
j=1,2

(
adj · pLj −

1

2
bdjp

2
Lj

)
−
∑
i=1,2

(
asi · pGi +

1

2
bsip

2
Gi

)
Subject to:

pG1 + pG2 + pw = pL1 + pL2

− T ≤ pG1 + pw − pL1 ≤ T

− T ≤ pG2 − pL2 ≤ T

pG1 ≥ 0, pG2 ≥ 0, pL1 ≥ 0, pL2 ≥ 0

(5.4)
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Bus	  1	   Bus	  2	  

Figure 5.3 Two-bus grid example with mixed generation portfolio company (MGC)

The solution of ISO’s problem results in optimal dispatch amounts p̂G1(qw) and p̂G2(qw)

for all GenCos, and LMPs l̂mp1(pw) and l̂mp2(pw).

• It is assumed that the mixed generation portfolio company (MGC) consists of GenCo G1

and the wind plant w. The MGC submits it’s wind supply offer in day-ahead market

strategically so as to maximize the following profit function:

max
pdw

pdG1 · lmpd + (prG1 − pdG1) · lmpr + pdw · lmpd + (prw − pdw) · lmpr − C1(p
r
G1)

Subject to:

pdG1 = p̂G1(p
d
w), prG1 = p̂G1(p

r
w)

lmpdG1 = l̂mp1(p
d
w), lmprG1 = l̂mp1(p

r
w)

pdw ≥ 0

(5.5)

where p̂rG1 and l̂mp
r

G1 are optimal dispatch solutions in real-time markets when wind

plant produces power at the real-time level of prw .
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5.4.1 Analytical Model Results

Case 1: No capacity limit on transmission line

In the case of no capacity limit on transmission line connecting the 2 buses, the economic

dispatch logic implies dispatching the cheapest generation unit first, up to its capacity limit,

to serve the system load. Given the absence of capacity limits, as assumed in this model, the

cheapest unit can fulfill the load requirement of the entire system. The same logic also implies

that the ISO uses all of the reported wind supply offer first (because of near zero marginal cost

of production) to serve as much load as possible. We also assume that the wind capacity in

the system is not enough to meet all of load requirement and hence, it is necessary to dispatch

conventional units to meet the residual load. The lagrangian function for ISO’s economic

dispatch problem takes the following form:

L =
∑
j=1,2

(
adj · pLj −

1

2
bdj · p2Lj

)
−
∑
i=1,2

(
asi · pGi +

1

2
bsi · p2Gi

)
+

µ(pG1 + pG2 + pw − pL1 − pL2) + λ1pG1 + λ2pG2 + λ3pL1 + λ4pL2

(5.6)

To simplify the analysis we only consider the case where all dispatch amounts are positive, and

hence, λ1 = λ2 = λ3 = λ4 = 0. The dispatch amount and LMP for GenCo G1 in day-ahead

market are:

p̂dG1 =
E + F

G
− bd1D2 · pdw

G
(5.7)

where,

E = D2B1 + ad1b
s
2B2, F = bd1A2C1, G = D1A2 +D2A1

A1 = bd1 + bs1, B1 = ad1 − as1, C1 = as2 − as1, D1 = bd1b
s
1

A2 = bd2 + bs2, B2 = ad2 − as2, C2 = as1 − as2, D2 = bd2b
s
2

The LMP for the system (day-ahead and real-time) takes the following form:

lmp1 = lmp2 = as1 + bs1 · pG1 = as2 + bs2 · pG2

Given the dispatch amount and LMP, the MGC reports its wind supply offer to maximize the

net-earnings, as shown in Eq.. above. The result of this optimization problem is the optimal
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day-ahead wind supply offer, which takes the following form:

pd∗w = Constant+
prw
2

(5.8)

where,

Constant =
bd1b

d
2(as1 − as2) + bd1b

s
2(a

s
1 − ad2) + bd2b

s
2(a

s
1 − ad1)

2bs1(b
d
1b
d
2 + bd1b

s
2 + bd2b

s
2)

To analyze the optimal day-ahead wind supply offer w.r.t the real-time available wind power prw,

we assume that the GenCos have similar cost function parameters, i.e., as1 ≈ as2 and bs1 ≈ bs2.

Also, it is reasonable to believe that the intercept of load (demand) functions are greater,

in magnitude, than the corresponding cost function intercept parameters, i.e., ad1 ≥ as1 and

ad2 ≥ as2. Under these conditions it is easy to see that Constant ≤ 0. Hence, the optimal

wind supply offer strategy of MGC in the day-ahead market is to report less than the real-time

available wind power, i.e.,

pd∗w <
prw
2

(5.9)

Case 2: Capacity limit on transmission line

In the case of a capacity limit of T MW on transmission line, we can have the following

cases optimal dispatch cases: 1) p̂G1 + pw − p̂L1 ≥ T , which implies congestion in the direct

1→ 2, or 2) p̂G2 − p̂L2 ≥ T , which implies congestion in the direct 2→ 1 8. We first consider

the case when congestion occurs in direction 1 → 2. The Lagrangian for ISO’s OPF problem

takes the following form:

L =
∑
j=1,2

(
adj · pLj −

1

2
bdj · p2Lj

)
−
∑
i=1,2

(
asi · pGi +

1

2
bsi · p2Gi

)
+ µ(pG1 + pG2 + pw − pL1 − pL2) + γ(T + pL1 − pG1 − pw)

+ λ1pG1 + λ2pG2 + λ3pL1 + λ4pL2

(5.10)

Once again, solving MGC’s net-earnings maximization problem from Eq.. results in the fol-

lowing day-ahead wind supply offer:

pd∗w =
prw
2
− ad1 − as1

2bs1
− bd1
bs1

T

2
(5.11)

8Congestion is the outcome of the OPF problem and hence, it is not technically correct to assume congestion
on a transmission a priori. However, the problem may be motivated by assuming that the GenCo is able to
accurately predict OPF solution, based on supply offer strategies of other GenCos, and hence, can predict
congestion on a transmission line. In this paper, we are not interested in modeling the process used by the
GenCo to predict congestion.
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Using the same reasoning as in the case with no transmission capacity limit, it is reasonable

to assume that ad1 ≥ as1. Hence, once again we see that the optimal wind supply offer in the

day-ahead market is to report lower than available real-time wind power, i.e.,

pd∗w <
prw
2

(5.12)

When congestion occurs in the opposite direction, 2 → 1, the Lagrangian for ISO’s OPF

problem takes the following form :

L =
∑
j=1,2

(
bdj · pLj −

1

2
adj · p2Lj

)
−
∑
i=1,2

(
bsi · pGi +

1

2
asi · p2Gi

)
+ µ(pG1 + pG2 + pw − pL1 − pL2) + γ(T + pL2 − pG1)

+ λ1pG1 + λ2pG2 + λ3pL1 + λ4pL2

(5.13)

Solving the MGC’s net-earnings maximization problem results in the optimal wind supply

offer of the following form:

pd∗w =
prw
2

+
as1 − ad1

2bs1
+
bd1
bs1

T

2
(5.14)

It is interesting to note that the optimal supply offer in this scenario can be greater than

the real time wind power, i.e., pd∗w ≥ prw, if the following condition for real-time wind power

output were to be true:

prw ≥
ad1 − as1
b1s

+ T
b1d

b1s
(5.15)

In this case, the MGC uses wind power to offset congestion on the transmission line in order to

maximize net-earnings from the conventional generation unit. Hence, we see that exist incen-

tives to under/over-report wind supply offers by companies with mixed generation portfolios

to maximize their overall net-earnings.

5.5 Two-Bus Grid: Numerical Model of Strategic Wind Trading

In this section we present results of strategic wind trading by a mixed-portfolio generation

company, obtained from numerical methods. The method allows to extend analysis to grids

with more than 2 buses. However, to compare the results with the analytical model, the

analysis is done using the same 2-bus grid in Fig. 5.3. We will now briefly describe the

numerical method.
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5.5.1 Mathematical Program with Equilibrium Constraints

Mixed generation company’s optimal wind supply offer strategy is modeled as bi-level opti-

mization problem. The inner problem solves ISO’s optimal dispatch amounts, given the supply

offers and demand bids from GenCos and LSEs, respectively. The MGC then solves for the

optimal wind supply offers by maximizing the objective function, given the optimal dispatch

values as constraints.

max
pdw

Conventional + Wind Power Net Earnings

Subject to:

min
pGi,pLj

ISO’s SCED Objective

Subject to:

Nodal Power Balance Constraint

Transmission Line Capacity Constraints

Generation Capacity Constraints

Generation Non-negativity Consrtaints

The inner problem can be represented using FOC from ISO’s Lagrangian formulation. The

inequality constraints in ISO’s optimization problem take the form of complementarity con-

ditions and hence, the outer problem is sometimes referred to as mathematical problem with

complementarity constraints (MPCC).

5.5.2 GenCo’s Bi-level Optimization Problem

Wind Farm w owns conventional GenCo i. We assume that the conventional GenCos,

including the the one owned by the wind farm report their true supply offers. Wind farm can

report its supply offer strategically to maximize the following profit function:

max
pw

pdci · lmpdi + (prci − pdci) · lmpri︸ ︷︷ ︸
Conventional GenCo net-earnings

− Ci(p
r
Gi)︸ ︷︷ ︸

Production cost

+ pdw · lmpdi + (prw − pdw) · lmpri︸ ︷︷ ︸
Wind plant net-earning

(5.16)
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The inner level problem is ISO’s optimal power flow problem, where the ISO solves for GenCos’

optimal dispatch levels and nodal LMPs by taking as given the supply offers of the GenCos,

including the wind supply offer.

min
pCj ,fij ,θj

J∑
j=1

(aj · pcj + bj · p2cj)

subject to:

pcj −
∑
i

fji +
∑
i

fij = pLj − pwj , ∀ j ∈ N [lmpj ]

fij = Bij [θi − θj ], ∀ ij ∈ L [γij ]

− fij ≥ −KU
ij , ∀ ij ∈ L [λ+ij ]

fij ≥ KL
ij , ∀ ij ∈ L [λ−ij ]

− θj ≥ −θMax, ∀ j ∈ N [α+
j ]

θj ≥ −θMin, ∀ j ∈ N [α−j ]

− pcj ≥ −pUcj , ∀ j ∈ N [µ+j ]

pcj ≥ 0, ∀ j ∈ N [µ−j ]

(5.17)

The Lagrangian for ISO’s optimal power flow problem is:

L =

J∑
j=1

(aj · pcj + bj · p2cj) + lmpj

(
pLj +

∑
i

fji −
∑
i

fij − pcj − pwj

)

γij(Bij(θi − θj)− fij) + λ+ij(−K
U
ij + fij) + λ−ij(K

L
ij − fij)

α+
j (−θmaxj − θj) + α−j (θminj − θj) + µ+j (−pmaxcj + pcj) + µ−j (pmincj − pcj)

(5.18)

The GenCo’s MPEC problem can now be written as a mathematical problem with complemen-

tarity constraints (MPCC), where the objective function is as given in equation (1) subject to
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the following constraints:

pcj : acj + 2bcj − lmpj + µ+j − µ
−
j = 0, ∀ j ∈ N (5.19)

θj : α+
j − α

−
j +

∑
i,ji∈L

Bji · γji −
∑
i,ij∈L

Bij · γij = 0, ∀ j ∈ N (5.20)

fij : lmpi − lmpj − γij + λ+ij − λ
−
ij = 0, ∀ ij ∈ L (5.21)

lmpj : pcj + pwj −
∑
i

fji +
∑
i

fij = pLj , ∀ j ∈ N (5.22)

γij : Bij [θi − θj ]− fij = 0, ∀ ij ∈ L (5.23)

α+
j : 0 ≤ θmaxj − θj ⊥ α+

j ≥ 0, ∀ j ∈ N (5.24)

α−j : 0 ≤ −θminj + θj ⊥ α−j ≥ 0, ∀ j ∈ N (5.25)

λ+j : 0 ≤ KU
ij − fij ⊥ λ+ij ≥ 0, ∀ ij ∈ L (5.26)

λ−j : 0 ≤ −KL
ij + fij ⊥ λ−ij ≥ 0, ∀ ij ∈ L (5.27)

µ+j : 0 ≤ pUcj − pcj ⊥ µ+j ≥ 0, ∀ j ∈ N (5.28)

µ−j : 0 ≤ pcj ⊥ µ−j ≥ 0, ∀ j ∈ N (5.29)

The model is being solved using GAMS solvers.

5.5.3 Numerical Model Results

The two-bus grid presented in Fig. 5.3 is used to solve the numerical model. The LSEs have

fixed demand, and specifically the demand bids (pL) are:

pL1 = 75 MW & pL2 = 100 MW

The capacity limit on transmission line 1→ 2, T = 20 MW. The GenCos have the cost function

attributes and generation capacity limits as shown in Table. 5.6.

Table 5.6 2-Bud Grid for Numerical Model: GenCo Attributes

GenCo Ordinate (a) Slope (b) Lower Capacity (MW) Upper Capacity (MW)
G1 3.07 0.5 0 200
G2 2.11 0.3 0 150

Wind 0 0 0 40

As in the analytical mode, it is assumed that MGC can accurately forecast the real-time

wind output level prw, while it may choose to strategically under/over-report the supply offer,
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pdw, in day-ahead market. The results in Table. 5.7 show the LMPs and power dispatch levels

of the GenCos if the MGC reports true wind supply offer, i.e., pdw = prw.

Table 5.7 True Wind Supply Offer by Firm with Mixed Portfolio of Generation Assets (MGC)

LMP ($/MWh) Dispatch (MWh)

MGC MGC

GenCo1 Wind GenCo2 GenCo1 Wind GenCo2

26.11 26.11 30.57 55.00 40.00 80.00

The results in Table. 5.8 show the LMPs and power dispatch levels when the MGC reports

wind supply offer in day-ahead market, strategically.

Table 5.8 Strategic Wind Trading by Firm with Mixed Portfolio of Generation Assets (MGC)

LMP ($/MWh) Dispatch (MWh)

MGC MGC

GenCo1 Wind GenCo2 GenCo1 Wind GenCo2

30.70 30.70 30.70 55.26 24.43 95.30

It is evident that by under-reporting the day-ahead wind supply offer in this case, the MGC

is able to drive up the LMPs. The net-earnings for the two cases are shown in Table. 5.9.

Table 5.9 Strategic Wind Trading by Firm with Mixed Portfolio of Generation Assets (MGC)

Net-Earnings ($)

True Supply Offer Strategic Supply Offer

1650.35 1920.06

Hence, by under-reporting the MGC is able to secure extra net-earnings from its mix of

generation assets. It is noteworthy, that the revenue from wind plant, by itself, decreases, but

the additional net-earnings from the conventional unit offset the reduction in reduction wind

plant revenues.

5.6 Conclusion

The analytical and computational work presented in sections 3, 4 and 5 illustrates the

incentives of wind power producers to report wind supply offers. It is observed that mixed-
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portfolio generation companies can either under-report wind supply offers to either increase

LMPs at the sites of their conventional generation units, or over-report to offset transmission

congestion. The next step is to extend the numerical model over a larger grid. This would

allow us to study the affects of spatial location of wind plants, as well as, model more complex

ownership structures.

The study was conducted in the absence of any uncertainty in wind power production.

Future studies would include strategic decision of profit-seeking companies, with different risk

preferences, when wind flow and/or energy demand are stochastic. For example, we can study

how mixed generation portfolio companies determine the optimal supply offers for their con-

ventional and wind generation, based on risk valuation measures such as Value-at-Risk (VaR)

and Conditional Value-at-Risk (CVaR); see, for example, the analysis in [10].

This work should help electric power market participants to understand the value of in-

formation when there exists uncertainty about wind availability and demand levels. It should

also help policy makers to efficiently incorporate greater amount wind energy and demand re-

sponse programs into current power systems by better understanding the behavior of market

participants.
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CHAPTER 6. General Conclusions

Electric power industries around the world have undergone restructuring - from govern-

ment regulated to more market oriented. However, electric power is not a tradeable asset in

the classical sense since storage costs are prohibitively high. This is a very fundamental fac-

tor distinguishing electric power markets from other markets. Additionally, the recent moves

towards greater self reliance for energy needs, as well as driven by a need to switch to cleaner

renewable generation sources, wind power has gained focus through various political initiatives.

Hence, the study of electric power as an economics commodity presents special challenges.

In this thesis, we investigate the risk management issues of market participants and overall

market efficiency at the wholesale power markets (individual and market operators). We also

study how the market rules dealing with renewable energy sources affect market participants’

strategic trading behaviors.

In chapter 2, we presented the difficulties in objectively measuring market participants’

abilities to exercise market power owing to the physical characteristics of electricity. Using

a wholesale power market test-bed (AMES), we studied the efficacy of various traditional, as

well as newly proposed, measures of market performance, in a dynamic setting with learning

agents. It is observed that Lerner Index (LI) and Market Advantage Index (MAI) correctly

indicate diminishing ability to exercise market power by market participants, as the level of price

sensitivity increases. On the other hand, Herfindahl-Hirschman Index (HHI) can be misleading,

indicating the potential to exercise market power, when no potential exists. Similarly, Residual

Supply Index (RSI) can be misleading, indicating no potential to exercise market power, when

such potential does exist, as indicated by positive values of LI and MAI.

In chapter 3, we introduced the concept ofprice risk in restructured power markets. We

presented a brief scenario illustrating the origin of price risk and the various measures market
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participants employ to hedge against those risks. We then provided the definition of Financial

Transmission Rights (FTR), and how FTRs can be used along with bilateral contracts to hedge

against price risk. The chapter also presented a survey of research on implications of FTR

market design on overall wholesale power market efficiency.

In chapter 4, we presented a study of joint bidding strategies of market participants in inter-

linked financial and physical energy markets. Specifically, we study how generation companies

bid into ISO organized FTR auctions based on their expectations of payoffs in the day-ahead

energy markets, and the subsequent supply offer strategy in the day-ahead market to maxi-

mize joint net-earnings from energy sales and revenues from the FTRs already acquired. The

results show that Nash-supply function equilibria exist only for certain portfolios of FTRs. It

is also observed that the strategic behavior of generation units changes dramatically for dif-

ferent congestion patterns in the grid. However, even for a simple setup with two identical

generators, it is not easy to solve the problem using purely analytical methods. Hence, we

then used agent-based computational methods to solve for the joint decision making problem.

Generation companies (GenCos) were modeled as adaptive learners in both the markets, in-

teracting repeatedly with other GenCos until they converged to “stable” action choices in the

two markets. The results show that the GenCos are able to learn optimal strategies, based

on spatial location on the grid. Additionally, the GenCos can systematically coordinate their

strategies in the two markets.

In chapter 5 we presented the strategic incentives of companies with both conventional

units and wind plants, to under/over-report wind supply offers in day-ahead markets, relative

to the expected wind power output in real-times markets. We provided empirical basis for

such a study, by using data from Midwest ISO (MISO) markets. The use of analytical models

and numerical methods demonstrates the strategic incentives of mixed generation portfolio

companies (MGC). It is observed, using a 2-bus grid, that MGCs can have incentives to both

under and over-report wind supply offers in day-ahead markets depending on the location of

generation assets, as well as, the congestion patterns.
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APPENDIX A. Optimal Power Flow Calculation

Load-Demand Conditions for Production Decisions

The following grid, Figure. A.1, has GenCos B and S at busses 1 and 2 respectively, while

the LSE is located at bus 3. GenCo B produces at marginal cost, MCB = 10 + 0.01pGB where

the avoidable fixed cost is 10$/MW and pB is MW amount of electricity produced. Similarly,

GenCo S produces at marginal cost, MCS = 13 + 0.02pGS . The LSE at bus 3 demands fixed

load pL MW. It is assumed that the total installed generation capacity at each bus exceeds the

B

1

3

pGB

S

2

pGS

pL=pGS+pGB

Figure A.1 Three Node Grid

load demand at any given time. It is also assumed that the GenCos report their true marginal

costs in energy supply offers to the ISO power pool auction. Analytical solutions for the power

pool trading can be characterized for scenarios with or without congestion in the grid. First,

we will find the load demand conditions under which either/both GenCos are dispatched to

produce electricity in a grid with no binding transmission constraints. The following conditions

must satisfy for the case with no congestion in the grid:
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• The total electricity generation at the two buses must equal the total load demand at bus

3, i.e.

pGS + pGB = pL (A.1)

• Energy price is same across the nodes and equals the marginal cost of producing the last

unit of electricity (LMP) at two production busses.

Π = MCB = MCS

Π = 10 + 0.01pGB = 13 + 0.02pGS (A.2)

where Π is the energy price and because there is no congestion in the grid, the LMPs for buses

1 and 2 are equal, i.e. ΠB = ΠS = Π.

Case 1 : Only ONE GenCo is producing because the load is not high enough to induce produc-

tion from both GenCos. It is immediately apparent that GenCo B is the only one producing

electricity because of the lower marginal cost of production. The upper limit of load demand

level for the condition to hold is the following:

MCB ≤MCS

10 + 0.01pL ≤ 13 (A.3)

Hence, for load demand conditions such that pL ≤ 300MW, only GenCo B serves the load.

Case 2 : Both GenCos are dispatched to serve the load pL > 300 MW. Conditions in equations

2-3 above are still satisfied and by simultaneously solving the two equation, following dispatch

levels are observed at the two production busses.

• GenCo B : pGB = 100 + 2/3pL MW

• GenCo S : pGS = 1/3pL − 100 MW

The energy price (LMPs) across the busses is Π = 11 + .02/3pL $/MW.
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Branch Power Flow Solutions

In this subsection we will derive branch flows through individual transmission lines using

the power flow solutions obtained above. The power flows are derived first for the case without-,

and then extended to the case with binding transmission line constraints. It is assumed that

the reactance on each transmission line is the same and specifically, x12 = x23 = x13 = .2. It is

also assumed that pL > 300 MW so that both GenCos are in operation. The following set of

load-balance and power flow rules are used to obtain individual branch power flows.

pGB + pGS = pL (A.4)

pGB = P13 + P12 (A.5)

pGS = P21 + P23 (A.6)

pL = P13 + P23 (A.7)

where equation (58) represents load-balance condition and equations (59)-(61) represent branch

flows constituting energy injection/withdrawal conditions.

Case1: No Transmission Line Limits Imposed. As shown in Figure. A.2 below, the method

of superposition Kirschen and Strbac (2005) can be used to identify branch flows in the grid

owing to power injections at various busses. Hence, the following conditions for branch flows

must hold,

P13 = PS213 + PB13

P12 = PB123 + (−PS213) = −P21

P23 = PS23 + PB123 (A.8)

The set of equations show that power flows through transmission lines are comprised of flows

owing to injections at different buses. Again, using the methods in Kirschen and Strbac (2005)

the following formula can be used to obtain branch flow due to power injection at a specific

bus.

Pkm = PTDF ikm ∗ pGi (A.9)
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pGB+pGS

P13

P23
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pGB

pGB

P13
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P123
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1

2

3

PGS
pGS

P23
S

P213
S

Figure A.2 Branch flows via superposition WITH NO transmission constraints

for all transmission lines km ∈ BR and all GenCos i = 1....I, where PTDF ikm is the Power

Transmission Distribution Factor and describes the amount power transmitted through branch

km due to 1 MW injection of power by GenCo i at bus k and to be withdrawn at bus m. The

PTDF for a transmission line is calculated as follows:

PTDF ikm =

∑K
n=1,n 6=k xn∑K
m=1 xm

. (A.10)

Hence, the power flow on transmission line 1→ 3 due to power injected at bus B is,

PB13 = PTDFB13 ∗ pGB =

(
.2 + .2

.6

)
∗ pGB =

2

3
pGB (A.11)

Similarly, the power flow on branch 2→ 1→ 3 due to power injected at node S is,

PS213 = PTDFS213 ∗ pGS =

(
.2

.6

)
∗ pGS =

1

3
pGS (A.12)

Hence, the total power flow on line 1→ 3 is given by,

P13 = PB13 + PS213 =
2

3
pGB +

1

3
pGS =

100

3
+

5

9
pL (A.13)

Similarly, the power flows on lines 2→ 3 and 1→ 2 are,

P23 =
4

9
pL −

100

3

P12 =
200

3
+

1

9
pL (A.14)
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The energy dispatch levels and LMPs at various buses are the same as found above for the

unconstrained transmission lines case.

Case 2: Transmission Line Constraint Imposed. Now lets assume there exists a transmis-

sion line limit on line 1 → 3, PU13, and the corresponding load demand at bus 3 is p̂L > 300

MW such that,

P13 = PU13 =
100

3
+

5

9
p̂L. (A.15)

In case the load at bus 3, pL > p̂L, i.e. load demand exceeds the critical limit after which line

1 → 3 becomes congested so that P13 > PU13 and power equivalent to P13 − PU13 = 5
9(pL − p̂L)

must be transmitted in the direction 3 → 1 to decongest the line. The required transmission

flows can be achieved by injecting appropriate amount of power at bus 2 and withdrawing the

same at bus 1. Using the branch power flow rule in equation (63), we know that for 1 MW of

power injected at bus 2 and withdrawn at bus 1, 1/3 MW flows through branch 2 → 3 → 1

and 2/3 MW flows through branch 2→ 1. Figure. A.3 shows the branch flows.

B

1

3

pGB

1 MW

P21 = 2/3 MW

P231 =1/3 MW
x12 = x23 = x13 =0.2

S

2

pGS

1 MW

231

Figure A.3 Branch flows for ONE MW power injection at Bus 2 and withdrawn at bus 1

The required power of F MW to be injected at bus 2 must satisfy P ∗ 1
3 = 5

9(pL − p̂L). Hence,
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P = 5
3(pL − p̂L) and the implied branch flows are

PS21 =
10

9
(pL − p̂L)

PS231 =
5

9
(pL − p̂L) (A.16)

Using the method of superposition as shown in Figure. A.4 we can obtain the required branch

power flows satisfying the transmission line constraints. The superposition method combines

original power flow solutions from the unconstrained case (eqns 14-15) with the implied power

flows due to additional F MW of power injected at bus 2 (to induce offsetting power transmis-

sion on line 3 → 1 to decongest) to result in power flows through branches that comply with

transmission line constraints.
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Figure A.4 Branch flows via superposition WITH transmission constraints

The branch flows are as follows,

P ′13 =
100

3
+

5

9
p̂L

P ′23 = pL −
5

9
p̂L −

100

3

P ′12 =
200

3
+

10

9
p̂L − L (A.17)
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The power dispatch levels of GenCos at the two production busses are the following,

P ′GS = pGS +
5

3
(pL − p̂L) = 2pL −

5

3
p̂L − 100

P ′GB = pGB −
5

3
(pL − p̂L) = 100 +

5

3
p̂L − pL (A.18)

The LMPs at the two production busses are the following,

LMP ′1 = ΠB = 10 + 0.01p′GB = 11 + 0.01

(
5

3
p̂L − pL

)
LMP ′2 = ΠS = 13 + 0.02p′GS = 11 + 0.02

(
2pL −

5

3
p̂L

)
(A.19)

It is easy to verify that in case no transmission constraints are binding and hence, no transmis-

sion congestion, the results for branch power flows, energy dispatch quantities of GenCos and

the LMPs across the grid are the same as obtained for the no-transmission-constraints case.

The result is proved by replacing p̂L with pL in all the expressions.
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